
Practical Experiences on NFC Relay Attacks
with Android?

Virtual Pickpocketing Revisited

José Vila1 and Ricardo J. Rodŕıguez2

1 Department of Computer Science and Systems Engineering
University of Zaragoza, Spain

2 Research Institute of Applied Sciences in Cybersecurity
University of León, Spain

594190@unizar.es, rj.rodriguez@unileon.es

Abstract. Near Field Communication (NFC) is a short-range contact-
less communication standard recently emerging as cashless payment tech-
nology. However, NFC has been proved vulnerable to several threats,
such as eavesdropping, data modification, and relay attacks. A relay at-
tack forwards the entire wireless communication, thus communicating
over larger distances. In this paper, we review and discuss feasibility
limitations when performing these attacks in Google’s Android OS. We
also perform an in-depth review of the Android implementation of the
NFC stack. We show an experiment proving its feasibility using off-the-
shelf NFC-enabled Android devices (i.e., no custom firmware nor root
required). Thus, Android NFC-capable malicious software might appear
before long to virtually pickpocket contactless payment cards within its
proximity.

Keywords: NFC, security, relay attacks, Android, contactless payment

1 Introduction

Near Field Communication (NFC) is a bidirectional short-range (up to 10 cm)
contactless communication technology based on the ISO-14443 [1] and the Sony
FeLiCa [2] Radio Frequency Identification (RFID) standards. It operates in the
13.56 MHz spectrum and supports data transfer rates of 106, 216, and 424 kbps.

NFC defines three operation modes: peer-to-peer, read/write, and card-
emulation mode. In peer-to-peer mode, two NFC devices communicate directly
with each other. This mode is commonly used to exchange business cards, or
credentials for establishing a network link. Read/write mode allows an NFC de-
vice to communicate with an NFC tag. Finally, card-emulation mode enables an
NFC device to behave as a contactless smartcard, thus allowing to communicate
with an NFC reader/writer.

? This work was partially supported by the University of León under contract X43.



Nowadays, NFC technology is widely used in a disparity of applications,
from ticketing, staff identification, or physical access control, to cashless pay-
ment. In fact, the contactless payment sector seems the one where NFC has
generated more interest, accordingly to market studies [3, 4]. As Fischer envi-
sioned in 2009 [5], the confluence of NFC with smart phones can be the reason
behind this fact since NFC is a way to bring “cards” to the mobile [6].

To date, almost 300 different smart phones are (or will be soon) available at
the market [7]. Most of them are based on Google’s Android OS (or Android for
short), while other OS such as Apple’s iOS, BlackBerry OS, or Windows Phone
OS are less representative. For instance, Apple has just started to add NFC
capabilities into its devices: Apple’s iPhone 6 is the first model integrated with
an NFC chip, although is locked to work only with Apple’s contactless payment
system [8]. As a recent market research states [9], this trend will keep growing
up, expecting to reach more than 500 million of NFC payment users by 2019.

Unfortunately, NFC is insecure as claimed by several works [10–13], where
NFC security threats and solutions have been stated. Potential threats of NFC
are eavesdropping, data modification (i.e., alteration, insertion, or destruction),
and relay attacks. Eavesdropping can be avoided by secure communication, while
data modification may require advanced skills and enough knowledge about RF
transmission, as well as ad-hoc hardware to perform the attack. A relay attack,
defined as a forwarding of the entire wireless communication, allows to commu-
nicate over a large distance. A passive relay attack forwards the data unaltered,
unlike an active relay attack [14]. In this paper, we focus on passive relay attacks.

Relay attacks were thought to be difficult from a practical perspective, mainly
due to the physical constraints on the communication channel and the specialized
hardware (or software) needed. However, the eruption of NFC-enabled mobile
phones (or devices) completely changes the threat landscape: Most NFC commu-
nication can be relayed – even NFC payment transactions – with NFC-enabled
devices. Many works have proved this fact under different attack scenarios, as
we reviewed in Section 5.

Mobile malicious software (i.e., malware) usually target user data (such
as user credentials or mobile device information), or perform fraud through
premium-rate calls or SMS, but we believe that the rise of NFC-enabled de-
vices put NFC in the spotlight for malware developers [15]. To the best of our
knowledge, to date there not exist any malware with NFC capabilities although
they might appear before long. To prove if an NFC-capable malware might ex-
ist nowadays, in this paper we study the feasibility of passive relay attacks in
Android. Android is used since it leads the global smartphone market [16] and
provides a broad set of freely resources for the developers.

The contribution of this paper is threefold: first, we provide an in-depth
review of Android implementation of the NFC stack; second, we discuss the
implementation alternatives to perform NFC relay attacks in Android; and third,
we show a practical implementation of these attacks using two NFC-enabled
mobile phones running an off-the-shelf (OTS) Android (i.e., no custom firmware
nor root permissions). Our findings put in evidence that these scenarios are



nowadays feasible, requiring permission only of NFC and relay communication
link chosen (e.g., Bluetooth, WiFi, or GPRS). This issue clearly supposes a
high security risk: An NFC-capable malware installed on an Android device
can interact with any contactless payment cards in its proximity, being able to
conduct illegal transactions. Current limitations and feasibility of some malware
attack scenarios are also introduced.

The outline of this paper is as follows. Section 2 introduces previous concepts.
In Section 3, we analyse and discuss practical issues of alternatives provided by
Android to perform an NFC passive relay attack. Section 4 describes a prac-
tical implementation of this attack using OTS Android NFC-enabled devices,
discusses threat scenarios, and introduces countermeasures. Section 5 reviews
related works. Finally, Section 6 states conclusions and future work.

2 Background

This section first briefly introduces the ISO/IEC 14443 standard [17] since con-
tactless payment cards rely on it. Then, relay attacks and mafia frauds are
introduced. Finally, we review the history of NFC support in Android.

2.1 ISO/IEC 14443 Standard

ISO/IEC 14443 is a four-part international standard for contactless smartcards
operating at 13.56 MHz [17]. Proximity Integrated Circuit Cards (PICC), also
referred to as tags, are intended to operate up to 10 cm of a reader antenna,
usually termed as Proximity Coupling Device (PCD).

Part 1 of the standard defines the size, physical characteristics, and environ-
mental working conditions of the card. Part 2 defines the RF power and two
signalling schemes, Type A and Type B. Both schemes are half duplex with
a data rate of 106kbps (in each direction). Part 3 describes initialisation and
anticollision protocols, as well as commands, responses, data frame, and tim-
ing issues. A polling command is required for waking both card types up and
start communication. Part 4 defines the high-level data transmission protocols.
A PICC fulfilling all parts of ISO/IEC 14443 is named IsoDep card (for instance,
contactless payment cards). As response to the polling phase, a PICC reports
whether Part 4 is supported. Apart from specific protocol commands, the pro-
tocol defined in Part 4 is also capable of transferring Application Protocol Data
Units (APDUs) as defined in ISO/IEC 7816-4 [18] and of application selection
as defined in ISO/IEC 7816-5 [19]. ISO/IEC 7816-4 and ISO/IEC 7816-5 are
part of ISO/IEC 7816, a fifteen-part international standard related to contacted
integrated circuit cards, especially smartcards.

2.2 Relay Attacks and Mafia Frauds

Relay attacks were initially introduced by John Conway in 1976 [20], where he
explained how a player without knowledge of the chess rules could win to a



Grandmaster. To relate these attacks in detail, let us recall here to the well-
known people in the security community Alice, Bob, and Eve.

Fig. 1. Chess game relay.

Consider Grandmasters Alice, Bob, who are
both challenged by Eve at the same time to play
a correspondence chess game (i.e., chess move-
ments are received and sent via email, postal
system, or others long-distance correspondence
methods). Eve, who ignores the rules, selects
a different colour pieces in each match. When
playing, she only needs to relay movements re-
ceived/sent from one match to the other, until a
match ends. Fig. 1 shows the scenario described
by Conway. Note that both Alice, Bob, think
they are playing against Eve, but in fact they
are playing between them.

To the best of our knowledge, the first work
introducing relay attacks in systems where se-
curity is based on the proximity concern is [21].
Desmedt defined the mafia fraud as a relay at-
tack where a dishonest prover P ′ and a dishonest verifier V ′ act together to
cheat to a honest verifier V and a honest prover P, respectively, as V ⇐⇒ P ′ �
communication link � V ′ ⇐⇒ P, where P ′,V ′, communicates one each other
through a communication link. Herein, we adhere to this terminology to refer to
the contactless payment card (honest prover), the legitimate Point-of-Sale (PoS)
terminal (honest verifier), and the two NFC-enabled Android devices used to
perform an NFC passive relay attack (dishonest prover and dishonest verifier).

2.3 Evolution of NFC Support in Google’s Android OS

NFC support in Android began with Android version 2.3 (Gingerbread code-
name), where only peer-to-peer (used by Android Beam) and read/write opera-
tion modes were natively supported. This initial limitation was overcome by the
following version updates, being incrementally completed up to gaining an NFC
full support and a really comprehensive API for developers in Android version
4.4 (KitKat codename). In read/write operation mode, different communication
protocols and tags are supported, depending on the NFC chip manufacturer.
Namely, Android 2.3.3 (API level 10) onward provides (mandatory) support
for ISO/IEC 14443-3A (NfcA), ISO/IEC 14443-3B (NfcB), JIS 6319-4 (NfcF),
ISO/IEC 15693 (NfcV), ISO/IEC 14443-4 (IsoDep), and NDEF; while it provides
optional support for NdefFormatable, MifareClassic, and MifareUltralight

tags. From Android 4.2 (Jelly Bean) onward NfcBarcode tag was introduced.
Card emulation is the mode with more substantial changes among versions. In

the early NFC-enabled Android versions, this mode was only provided via hard-
ware using Secure Elements (SEs) following GlobalPlatform specifications [22].
A SE provides a tamper-proof platform to securely store data and execute appli-
cations, thus maintaining confidential data away from an untrusted host. With



SE card emulation, the NFC controller directly routes all communication from
external reader (e.g., a PoS terminal) to the tamper-resistant chip, without pass-
ing through the OS. That is, NFC communication remains transparent to the
OS. SEs are capable to communicate not only with the NFC controller but also
with mobile applications running within the OS (such as electronic wallets) and
over-the-air with the Trusted Service Manager (TSM).

TSM is an intermediary authority acting between mobile network operators
and phone manufacturers (or other entities controlling a SE) and enabling the
service providers (such as banks) to distribute and manage their applications
remotely. This closed, distributed ecosystem guarantees a high level of confidence
and has been mainly used by the payment sector. However, it excludes other
developers from using the card emulation mode. As a result, many developers
asked for an easier access to this resource.

The first solution was provided by BlackBerry Limited (formerly known as
Research In Motion Limited) company, which included software card emulation
(or “soft-SE”) mode in BlackBerry 7 OS [23]. This mode allowed the interaction
of RFID readers and mobile phone’s applications directly, thus completely open-
ing the card emulation to any developer. Basically, soft-SE (also named as Host
Card Emulation, HCE) allowed the OS to receive commands from the NFC con-
troller and to response them by any applications instead of by applets installed
on a SE.

HCE feature was unofficially supported to Android in 2011, when Doug Year
released a set of patches for Android CyanogenMod OS (version 9.1 onward).
These patches provided an HCE mode and a middleware interface adding two
new tag technologies (namely, IsoPcdA and IsoPcdB). However, this implemen-
tation worked only for a specific NFC controller (particularly, NXP PN544), in-
cluded at those dates in Google’s Android devices such as the Samsung Galaxy
Nexus or Asus Nexus 7 (first generation). Finally, Android officially supports
HCE mode since October 2013, when Android KitKat was released.

3 Practical Implementation Alternatives in Android

This section first introduces the Android NFC architecture. Then, we focus on
implementation issues of read/write and card-emulation operation modes in An-
droid as these modes allow to act as a dishonest verifier and a dishonest prover,
respectively, in an NFC attack relay. Finally, we point three limitations out when
performing these attacks in Android, and discuss its feasibility.

3.1 Android NFC Architecture: NCI Stack

Android NFC development offers an event-driven framework and extensive API
on two native implementations that depends on the NFC chip within the device:

– libnfc-nxp, which provides support for NXP PN54x NFC controllers and
NXP MIFARE family products. These products are not supported by all



Fig. 2. NFC architecture (taken from [24]).

NFC-enabled devices, since they use a proprietary transmission protocol
(that is, MIFARE family cards are not IsoDep cards).

– libnfc-nci, which provides support for any NFC Controller Interface
(NCI) [24] compliant chips, such as Broadcom’s BCM2079x family.

Nowadays, NCI leads the NFC development by several reasons: (i) it pro-
vides an open architecture not focused on a single family chip; (ii) it offers an
open interface between the NFC Controller and the DH; and (iii) it is a stan-
dard proposed by NFC Forum, a non-profit industry association that develops
NFC specifications, ensures interoperability, and educates the market about NFC
technology. In this paper, we focus on NCI by the same reasons.

NCI specification aims at making the chip integration of different manufac-
turers easier by defining a common level of functionality among the components
of an NFC-enabled device. It also provides a logical interface that can be used
over different physical channels, such as UART, SPI, and I2C.

A noteworthy fact is that Google dropped NXP in favour of Broadcom’s NFC
stack in their latest Nexus devices (from LG Nexus 4 onward). Moreover, the
Android Open Source Project does not support HCE mode for old NXP PN544
chipsets since they lack of AID dynamic routing capabilities, being only possible
to use it in devices with closed-source factory ROMs (e.g., Sony Xperia Z1, Sony
Compact Z1, and Sony Z Ultra). Latest NFC chipsets developed by NXP, such
as NXP PN547, support HCE mode since they are NCI-compliant.

Three main actors are distinguished in a NCI-compliant NFC scenario, as
depicted in Fig. 2: the NFC Execution Environment (NFCEE), which is a hard-
ware module in most cases (e.g., embedded SEs or Single Wire Protocol enabled
SD-Cards); the NFC Controller (NFCC); and the Device Host (DH), which refers
to the main processor, i.e., the own NFC-enabled device.

The NFCC transmits and receives information over the RF channel and is
part of a system-on-chip. It maintains a connection with the DH and others
NFCEE using the NCI, which defines a logic interface between them indepen-
dently of the physical layer. NCI also deals with data packet fragmentation,
according to the MTU defined by the physical layer.



NCI defines two message types, packed and transmitted over a particular
physical channel: (1) Control messages, subdivided in commands, responses,
and notifications. Commands are only sent from the DH to the NFCC, whereas
the others travel in both directions; and (2) Data messages, which carry the
information addressed to the NFC endpoint (i.e., a remote tag or reader). These
messages are only sent once the logic channel has been established. During initial-
isation, the default communication channel is set to the RF connection, although
more channels can be created with others NFCEEs.

NCI modules, such as the RF Interface modules, are a key part of the NCI
stack. An RF Interface module defines how the DH communicates with a given
NFC endpoint through the NCI. Each RF Interface supports a specific RF pro-
tocol and determines how the NCI data-message payload fits on its respective
RF message. This layered design allows a modular addition of interfaces imple-
menting new protocols.

3.2 Read/Write Operation Mode

The message flow in reader/writer mode is depicted in Fig. 3. Android applica-
tions are not allowed to directly set the device into read/write mode. However,
this mode is indirectly reached as follows: first, it registers the set of NFC tags
of interest to be detected through the AndroidManifest.xml file; and then, the
Android NFC service selects and starts the registered application whenever a tag
of interest is discovered (i.e., it enters in its proximity communication range).
Applications can also ask preference for a discovered tag when they are in fore-
ground mode.

The tag can be discovered by means of the NFCC, which polls the magnetic
field. Once a tag is detected, the NFCC first determines the protocol and the
technology used. Then, it sends an NCI notification message to the DH with the
tag details. The DH (indeed, the NfcService in Android) handles this notifica-
tion and fills a Tag object with the data received from the NFCC. Finally, the
DH creates and emits an Intent with the EXTRA TAG field, which is received by
the registered Android application with higher preference.

Android NFC API offers an specific class per RF protocol (i.e., to work
with different type of NFC tags) built on top of TagTechnology interface.
These classes implement the high-level I/O blocking transceive(byte[] data,

boolean raw) method, which is used to communicate a DH with an NFC tag.

Such a method can work with old NFC implementations (raw boolean flag)
where some preprocessing is needed before transmitting through the RF channel
(e.g., to compute and add CRC payloads to messages). Current libnfc-nci

implementation ignores this flag, while libnfc-nxp implementation uses it to
distinguish between ISO/IEC 14443 or NXP proprietary commands. In fact,
the transceive method executes via Inter Process Communication (IPC) a
remote invocation on TagService object, defined in NfcService. This object
is also associated to a TagEndpoint object, which references to the remote tag
and whose implementation relies on the native library used (libnfc-nci or



libnfc-nxp). Thus, the Android NFC API offers an abstraction of its internal
implementation.

Lastly, let us briefly describe low-level issues. The libnfc-nci implementa-
tion uses a reliable mechanism of queues and message passing named General
Kernel Interface (GKI) to easily communicate between layers and modules: Each
task is isolated, owning a buffer (or inbox) where messages are queued and pro-
cessed on arrival. This mechanism is used to send messages from the DH to the
NFCC chip, and vice versa.

3.3 Host-Card Emulation Operation Mode

The message flow in reader/writer mode is depicted in Fig. 4. Android applica-
tions can directly use HCE operation mode by implementing a service to process
commands and replies, unlike read/write operation mode, restricted to Android
activities. The aforementioned service must extend the HostApduService ab-
stract class and implement processCommandApdu and onDeactivated methods.

The processCommandApdu method is executed whenever an NFC reader
sends an APDU message to the registered service. Recall that APDUs are
the application-level messages exchanged in an NFC communication between
a reader/writer and an IsoDep tag, defined by the ISO/IEC 7816-4 specification
(see Section 2.1). In fact, an IsoDep-compliant reader initiates the NFC com-
munication by sending an explicit SELECT APDU command to the smartcard to
choose a specific Application ID (AID) to communicate with. This command is
finally routed by the NFCC to the registered application for the specified AID.

Therefore, each application must previously register the AID list of interest,
in order to receive APDU commands. As in the previous case, registration is
performed by means of AndroidManifest.xml file. Fortunately, Android version
5.0 (Lollipop codename) onward enables to dynamically register AIDs.

The Android NFC service (i.e., NfcService) populates during initialisation
an AID routing table based on the registered AIDs of each HCE application.
This table is basically a tree map of AIDs and services.

When the DH receives a SELECT command, the routing table is checked
and the corresponding service is set to defaultService. Thereafter, subsequent

User App

Tag

NFC developer framework

NfcService

mTagService.transceive

IPC

TagService

DeviceHost.TagEndPoint

<<realize>>

NativeNfcTag

JNI

doTransceive

System NFC Library

NativeNfcTag.cpp

libnfc-nci

Fig. 3. Message flow in Android NFC stack (reader/writer mode).



APDU commands are routed to that service until other SELECT command is re-
ceived, or a deactivation occurs (by a DESELECT command or a timeout). Routing
process is performed by Messenger objects sent between the NfcService and
the HostApduService: When the NfcService needs to route a message, it sends
a MSG COMMAND APDU to HostApduService, which extracts the APDU payload
and executes processCommandApdu. Similarly, an analogous process occurs with
a response, but handling a MSG RESPONSE APDU instead.

Note that the NFCC also maintains a routing table populated during each
NfcService activation. Unlike NfcService, the NFCC routing table contains
information about HCE applications within the DH and about SE applications.
In this case, it stores the destination route according to a set of rules: Technology,
Protocol, or specific AID. Destination route can be either the DH (default option)
or other NFCEE, such as a SE.

3.4 Limitations and Discussion

As previously described, Android NFC architecture is composed by different
layers acting at different levels. Table 1 summarises these layers in top-down
developer-accessible order, giving also details of implementation languages, on
whom depend them, and whether the code is open source software (OSS).

We envisioned three major limitations when performing an NFC relay attack
with dishonest parties (i.e., prover and verifier) in Android.

Limitation 1. The scenario envisioned by this limitation depicts an NFC-enabled
device with a non-NXP NFCC (the device, for short) acting as a dishonest
verifier and communicating with a legitimate proprietary tag such as MIFARE
Classic smartcards. The device must be in read/write mode. Since libnfc-nci

implementation does not allow sending raw ISO/IEC 14443-3 commands, the
device is unable to communicate with these proprietary tags. Note that the
standard defines a CRC field for each command before sent. We have empirically
verified where Android computes this CRC value. After some debugging and code
review, we concluded that the entity responsible of this computations is, in fact,
the ISO/IEC 14443-3 RF Interface module of the NFCC.

Fig. 4. Message flow in Android NFC stack (host-card emulation mode).



Therefore, this limitation is very unlikely to be circumvented, unless NFCC
is modified. On the contrary, since contactless payment cards are IsoDep cards
(i.e., fully ISO/IEC 14443-compliant), this issue does not really occur at all.

Limitation 2. In this case, we considered an NFC-enabled device acting as a
dishonest prover that communicates with a honest verifier. The device must be
in HCE mode, which is natively supported from Android KitKat onward (see
Section 2.3). Besides, the specific emulated AID has to be known in advance (see
Section 3.3). However, since the routing process is performed in the first layer,
it could be surrounded in a device with root permissions. Indeed, there exists
an Xposed framework module that addresses this issue. The Xposed framework
provides a way to make system-level changes into Android without installing a
custom firmware, but needs root permissions instead.

Therefore, an OTS Android (version 4.4) onward, dishonest prover can com-
municate with a honest verifier emulating any AID when this value is known in
advance. Otherwise, an Android device with root permissions is needed.

Limitation 3. Finally, we envisioned a complete NFC passive relay attack sce-
nario where a dishonest prover and a dishonest verifier communicate through a
non-reliable peer-to-peer relay channel. Note that the success of the relay attack
relies on the delay introduced by this communication link. A good review on
NFC relay timing constraints can be found in [25]. ISO/IEC 14443-3 [17] spec-
ifies a timings values that were found too low for software emulation on mobile
devices [26]. However, ISO/IEC 14443-4 [27] defines the Frame Waiting Time
as FWT = 256 · (16/fc) · 2FWI , 0 ≤ FWI ≤ 14, where fc = 13.56 MHz (i.e.,
the carrier frequency). Thus, FWT ranges from 500µs to 5s, which practically
solves most timing problems in any relay channel. Moreover, the standard also
allows to request additional computation time by the PICC with a WTX message,
which might potentially be implemented on Android to give an attacker addi-
tional time for a relay. We aim at further studying the feasibility of these attacks
in Android that we named as timed-extension NFC relay attack.

Therefore, an NFC relay attack on ISO/IEC 14443-4 protocol is feasible when
the delay on the relay channel is less than 5 seconds. Interestingly, the distance

Description Language(s) Dependency OSS

NFC developer framework Java, C++ API level Yes
(com.android.nfc package)

System NFC library C/C++ Manufacturer Yes
(libnfc-nxp or libnc-nci)

NFC Android kernel driver C Hardware and
manufacturer

Yes

NFC firmware ARM Thumb Hardware and No
(/system/vendor/firmware directory) manufacturer

Table 1. NFC architecture levels in Google’s Android OS.



seems to play an insignificant role since delay is reasonable even on geographical
scale [28].

Let us remark that FWI is completely generated by the NFCC and not con-
figurable by the Android NFC service on HCE mode (we have reviewed Android
source code and its value is not assigned, thus we assume it is assigned by NFCC).
Although official documentation defines a FWI ≤ 8 (i.e., FWT ≤ 78ms), some
PoS devices ignore FWT command sent by the PICC to provide better user
responses (and thus, a longer time window). From a read/write mode point of
view, this constraint does not happen since Android allows to set a timeout up
to 5 seconds. Surprisingly, EMVCo LLC, a public corporation which aims at
facilitating worldwide interoperability and acceptance of secure payment trans-
actions, recommends a FWI ≤ 7 [29]. Thus, FWT would be strictly lower than 5
s. We believe that a mandatory requirement instead of a recommendation would
enhance the security of contactless payment cards against NFC relay attacks.

Concluding Remarks. To summarise, any NFC-enabled device running OTS An-
droid version 4.4 onward is able to perform an NFC passive relay attack at
APDU level when the specific AID of the honest prover is known and an ex-
plicit SELECT is performed. Recall that any other communication involving a
APDU-compliant NFC tag (i.e., Type 4 tags such as MIFARE DESFire EV1,
Inside MicroPass, or Infineon SLE66CL) can also be relayed.

4 Relay Attack Implementation: Proof-of-Concept

In this section, we first perform an experiment of relay attack at contactless pay-
ment cards. Then, we foresee threat scenarios of NFC-capable Android malware
that may appear before long. Finally, countermeasures are discussed.

4.1 Proof-of-Concept Experiment

Recall that three parts are involved in an NFC relay attack (see Section 2.2):
(i) a peer-to-peer relay communication channel; (ii) a dishonest verifier, which
communicates with the honest prover (i.e., a contactless payment card in this
case); and (iii) a dishonest prover, which communicates with the honest verifier
(i.e., a PoS in this case). The dishonest verifier works in read/write operation
mode, while the dishonest prover relies on HCE operation mode.

For ethical reasons we used our own PoS device. Namely, an Ingenico IWL280
with GPRS and NFC support. As dishonest prover and verifier, we used two off-
the-shelf Android NFC-enabled mobile devices executing an Android application
developed for testing purposes (about 2000 Java LOC, able to act as dishonest
verifier/prover depending on user’s choice and to communicate point-to-point
via WiFi, Bluetooth, or direct TCP/IP socket), having a single constraint: The
dishonest prover must execute, at least, an Android KitKat version (first version
natively supporting HCE mode, see Section 2.3). The experiment has been suc-
cessful tested on several mobile devices, such as Nexus 4, Nexus 5 as dishonest
provers, and Samsung Galaxy Nexus, Sony Xperia S as dishonest verifiers.



V → P 00A4 0400 0E32 5041 592E 5359 532E 4444 4630 3100

P → V 6F30 840E 3250 4159 2E53 5953 2E44 4446 3031 A51E BF0C 1B61 194F 08A0 0000 0004 1010

0250 0A4D 4153 5445 5243 4152 4487 0101 9000

V → P 00A4 0400 08A0 0000 0004 1010 0200

P → V 6F20 8408 A000 0000 0410 1002 A514 8701 0150 0A4D 4153 5445 5243 4152 445F 2D02 6361

9000

V → P 80A8 0000 0283 0000

P → V 7716 8202 1880 9410 0801 0100 1001 0100 1801 0200 2001 0200 9000

V → P 00B2 0114 00

P → V 7081 9357 13XX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 5A08 XXXX XXXX XXXX XXXX

5F24 03XX XXXX 5F28 0207 245F 3401 018C 219F 0206 9F03 069F 1A02 9505 5F2A 029A 039C

019F 3704 9F35 019F 4502 9F4C 089F 3403 8D0C 910A 8A02 9505 9F37 049F 4C08 8E0C 0000

0000 0000 0000 4203 1F03 9F07 023D 009F 0802 0002 9F0D 05B0 50AC 8000 9F0E 0500 0000

0000 9F0F 05B0 70AC 9800 9F4A 0182 9000

V → P 00B2 011C 00

P → V 7081 C28F 0105 9F32 0301 0001 9204 3DD0 2519 9081 B034 45XX ...XX62 9000

V → P 00B2 021C 00

P → V 7081 B393 81B0 3445 XXXX XXXX XXXX ...XXXX XXXX XX62 9000

V → P 00B2 0124 00

P → V 7033 9F47 0301 0001 9F48 2A3E XXXX ...XXXX XXXX XX6D 9000

V → P 00B2 0224 00

P → V 7081 949F 4681 9018 XXXX XXXX XXXX ...XXXX XXXX XXF5 9000

V → P 80AE 8000 2B00 0000 0000 0100 0000 0000 0007 2480 0000 8000 0978 1502 2400 37FB 88BD

2200 0000 0000 0000 0000 001F 03

P → V 7729 9F27 01XX 9F36 02XX XX9F 2608 XXXX XXXX XXXX XXXX 9F10 12XX ...XX90 00

Table 2. Trace of a MasterCard contactless payment relayed.

The experiment execution workflow is as follows: First, each dishonest party
chooses its role (prover or verifier); Then, a peer-to-peer relay channel is estab-
lished. Finally, the dishonest verifier connects with a contactless payment card,
and the dishonest prover relays every APDU from the PoS to the card, and
vice versa. Thus, a successful payment transaction is conducted. We presented
a live demo during the RFIDsec 2015 event at New York City (USA) relaying a
MasterCard contactless payment to Madrid (Spain), i.e., almost 5775 km, using
two NFC-capable Android devices and a direct TCP/IP socket.

Table 2 shows a time-ordered excerpt of a MasterCard contactless transac-
tion, indicating the message flow. First, SELECT command (00A4) is sent to ask
the payment applications within the card. Then, MasterCard application is se-
lected. We obfuscated some bytes relative to sensitive data. A video demo of the
experiment is publicly available at http://vwzq.net/relaynfc/.

4.2 Threat Scenarios

Fig. 5 depicts a pair of threat scenarios using this attack vector. In Fig. 5(a),
we envisioned a network of Android infected devices (i.e., a botnet) that com-
municate with the bot master when a contactless payment card is detected. The
bot master can use this smartcard to conduct illegal transactions with a hon-
est verifier, or even multiple transactions at the same time collaborating with
multiple dishonest verifiers. We named this attack as distributed mafia fraud.
Fig. 5(b) foresees the same scenario than before, but with multiple dishonest
provers committing fraud at the same time, as a way to hide their real location.

http://vwzq.net/relaynfc/


Note that contactless payment cards implement security mechanisms such
as PIN after consecutive uses or checking of atypical payment locations. These
mechanisms clearly minimise the impact of the second threat scenario envisioned.

(a) Scenario 1: Distributed mafia fraud (b) Scenario 2: Hiding fraud locations

Fig. 5. Threat scenarios of NFC passive relay attacks by Android malware.

Lastly, let us remark a limitation of these attacks performed as an Android
malware. Since read/write operation mode in Android is only reachable by activ-
ities (see Section 3.2), an NFC-capable Android malware detecting a smartcard
in its proximity range starts execution in foreground. That is, when the infected
device is screen-locked, the malware cannot begin its execution until screen is
unlocked. However, note that a malware with root permissions or behaving as a
fake app can bypass this limitation.

In brief, a wide-scale botnet of Android devices running malicious appli-
cations that continuously seek contactless payment cards can lead to several
problematic situations. For instance, consider a malware that once it detects a
contactless payment card within its proximity, it iteratively communicates with
it sending incorrect PIN until it blocks. Then, the customer must proceed to
reactivate it – besides, s/he would notice the card blocking issue after trying to
legitimate use it. Similarly, instead of blocking the card the malware can try to
guess the cardholder’s PIN using a similar technique as [30], which may lead to
a very large scale fraud.

4.3 Relay Attack Resistant Mechanisms

Relay attack resistant mechanisms proposed in several works [10,14,23] are also
applicable in these scenarios. For the sake of space, we briefly describe distance-
bounding protocols, timing constraints, and propose hardware-fingerprinting
identification as practical countermeasure.

Distance-bounding protocols aim at upper bounding the physical distance
between two communicating parties based on the Round-Trip-Time of crypto-
graphic challenge-response pairs. Good implementations of these protocols may



provide adequate defence mechanisms to relay attacks. However, recent NFC-
based bank payment systems, whom actually dropped SE in favour of HCE apps,
perform a relay communication with back-end bank servers thus introducing an
allowed delay within the transmission. This issue puts in evidence the difficulty
of establishing a barrier between malicious and non-malicious relay transactions.
Similarly, enforcing timing constraints (e.g., timeout responses) in communica-
tion protocols can detect the delay of a relayed communication. Unfortunately,
timing constraints are not nowadays enforced in NFC-capable systems. Besides,
timing extensions allowed by ISO/IEC 14443 might also be problematic. How-
ever, these solutions may partially solve a relay attack scenario using a high
latency channel or long-distance dishonest parties.

Usually, an NFC chip uses a random unique identifier (UID) for the emulated
card in HCE mode. Thus, whitelisting (or blacklisting) UIDs in an NFC-capable
system may solve a relay attack scenario. However, this solution is unfeasible in
practice since it breaks legitimate mobile payments as well (card UIDs should
be previously known). Nonetheless, it may apply in ad-hoc scenarios.

Other physical countermeasures are also applicable, such as card shielding
covers acting as Faraday cages, on-card physical button/switch activation, or
secondary authentication methods within the cards (e.g., on-card fingerprint
scanners).

5 Related Work

Relay attacks on NFC have been widely studied in the literature [14,23,25,31–36].
First works on this topic [14,31] built specific hardware to relay the communica-
tion between a smartcard and a legitimate reader. In [31], timing constraints of
NFC link are explored, stating that an NFC communication can be relayed up to
a distance three orders of magnitude higher than the operating range. Hancke et
al. deeply reviewed relay attacks in [14], showing a practical implementation of
RFID hardware devices and discussing relay resistant mechanisms (e.g., timing
constraints, distance bounding, and additional verification layers).

Following the technological trend, other works perform relay attacks using
Nokia mobile phones with NFC capability [23, 32, 33]. Francis et al. described
in [32] a relay scenario composed of Nokia NFC-enabled phones and a Java MI-
Dlet application. Similarly, in [23] they relayed legitimate NFC transactions us-
ing Nokia NFC-enabled phones and a JavaCard application. Both works also dis-
cussed the feasibility of some countermeasures, such as timing, distance bound-
ing, and GPS-based or network cell-based location. In [33], a vulnerability on
how Nokia OS handles NFC Data Exchange Format (NDEF) [37] messages is
abused to create a Bluetooth link as a backdoor to the phone, thus being able
to install third-party software without user content.

Most recently, researchers have focused on relay attacks with Android ac-
cessing to SEs [25,34–36]. SEs are used in mobile devices to securely store data
associated with credit/debit cards. In [34–36], Roland et al. described practical
attack scenarios to perform Denial-of-Service and sensitive data disclosure in SE



of Android devices. However, these attacks require a non OTS Android device,
since root permissions are needed. Similarly, Korak and Hutter [25] compared
timing on relay attacks using different communication channels (e.g., Bluetooth,
GRPS, or WiFi). They also used custom-made hardware and Android devices
running custom firmware to build several attack scenarios. Indeed, a custom An-
droid firmware is needed since an Android version prior to KitKat is used (i.e.,
HCE mode was not natively supported).

Recent works have been published regarding feasibility of relay attacks on
long distances. In [38], the proximity assumption is shown to be broken using
specific hardware and software to obtain a distance between dishonest parties two
orders of magnitude greater than the nominal range (i.e., they reached distances
up to 115 centimetres). This limit is overcome in [28], where relay attacks are
performed on geographical scale, with a distance between dishonest parties of
hundreds of kilometres and very low delay in the relay transmissions.

6 Conclusions and Future Work

NFC is a bidirectional contactless communication technology that brings the
opportunity to merge smartcards with mobile smartphones. NFC has a lot of
applications, from physical authorisation or identification, to cashless payment.
However, NFC has been shown vulnerable in several aspects, such as eavesdrop-
ping, data modification, or relay attacks. Unlike eavesdropping or data modifica-
tion, relay attacks are a threat that may bypass security countermeasures, such
as identification of communication parties or cryptography schemes. The rise of
mobile phones within an NFC chip inside its hardware put relay attacks in the
spotlight: An NFC-enabled phone can be abused to interact with smartcards in
its proximity range. This becomes a serious risk when relay attacks in contactless
payment cards are feasible, since illegal transactions may be conducted.

In this paper, we perform an in-depth review of the NFC stack implemen-
tation in Google’s Android and study the implementation alternatives (offered
by Android version 4.4) onward to perform an NFC passive relay attack (i.e.,
data are transmitted unaltered). We discuss some limitations and show a prac-
tical implementation of an NFC relay attack using off-the-shelf NFC-enabled
Android mobile phone devices (i.e., no custom firmware nor root permissions
are required). We finally explain threats scenarios with this attack vector, and
countermeasures that may apply.

Our contribution in this paper includes a practical demonstration of a relay
attack implementation using NFC-enabled Android mobile phone platform. In
our opinion, the combination of high number of potentially exploitable devices,
easy development, and fast revenue will cause the virtual pickpocketing attack to
appear in the wild before long.

As future work, we aim at studying timing constraints of HCE mode in OTS
Android devices. Similarly, we aim at analysing whether active relay attacks are
feasible in Android.



References

1. International Organization for Standardization: ISO/IEC 18092:2013: Information
technology – Telecommunications and information exchange between systems –
Near Field Communication – Interface and Protocol (NFCIP-1) (March 2013)

2. Japanese Industrial Standard: JIS X 6319-4:2010: Specification of implementation
for integrated circuit(s) cards – Part 4: High speed proximity cards (October 2010)

3. Oak, C.: The year 2014 was a tipping point for NFC payments. [Online] (January
2015) http://www.finextra.com/blogs/fullblog.aspx?blogid=10382.

4. de Looper, C.: Mobile Payment Boasts Rosy Future, But Some Obstacles Remain
in Play. [Online] (January 2015) http://www.techtimes.com/articles/24762/

20150106/mobile-payments-worth-130-billion-2020.htm.
5. Fischer, J.: NFC in Cell Phones: The New Paradigm for an Interactive World.

IEEE Commun. Mag. 47(6) (June 2009) 22–28
6. Boysen, A.: NFC is the bridge from cards to the mobile. [Online]

(January 2015) http://www.secureidnews.com/news-item/nfc-is-the-bridge-
from-cards-to-the-mobile/.

7. NFC World: NFC phones: The definitive list. [Online; accessed at January 26,
2015] (January 2015) http://www.nfcworld.com/nfc-phones-list/.

8. Reardon, M., Tibken, S.: Apple takes NFC mainstream on iPhone 6; Apple Watch
with Apple Pay. [Online] (September 2014) http://www.cnet.com/news/apple-

adds-nfc-to-iphone-6-with-apple-pay/.
9. Juniper Research Limited: Apple Pay and HCE to Push NFC Payment Users

to More Than 500 Million by 2019. [Online] (October 2014) http://www.

juniperresearch.com/viewpressrelease.php?pr=483.
10. Haselsteiner, E., Breitfuß, K.: Security in Near Field Communication (NFC) –

Strengths and Weaknesses. In: Proceedings of the Workshop on RFID Security
and Privacy. (2006) 1–11

11. Madlmayr, G., Langer, J., Kantner, C., Scharinger, J.: NFC Devices: Security
and Privacy. In: Proceedings of the 3rd International Conference on Availability,
Reliability and Security (ARES). (2008) 642–647

12. Timalsina, S., Bhusal, R., Moh, S.: NFC and Its Application to Mobile Payment:
Overview and Comparison. In: Proceedings of the 8th International Conference on
Information Science and Digital Content Technology. Volume 1. (2012) 203–206

13. Damme, G.V., Wouters, K.: Practical Experiences with NFC Security on mobile
Phones. In: Proceedings of the 2009 International Workshop on Radio Frequency
Identification: Security and Privacy Issues. (2009) 1–13

14. Hancke, G., Mayes, K., Markantonakis, K.: Confidence in smart token proximity:
Relay attacks revisited. Computers & Security 28(7) (2009) 615–627

15. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A Survey of Mobile
Malware in the Wild. In: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, ACM (2011) 3–14

16. International Data Corporation: Smartphone OS Market Share, Q3 2014. [Online]
(2014) http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

17. International Organization for Standardization: ISO/IEC 14443-3: Identification
cards – Contactless IC cards – Proximity cards – Part 3: Initialization and anti-
collision (April 2011)

18. International Organization for Standardization: ISO/IEC 7816-4-2013: Identifica-
tion cards – IC cards – Part 4: Organization, security and commands for inter-
change (2013)

http://www.finextra.com/blogs/fullblog.aspx?blogid=10382
http://www.techtimes.com/articles/24762/20150106/mobile-payments-worth-130-billion-2020.htm
http://www.techtimes.com/articles/24762/20150106/mobile-payments-worth-130-billion-2020.htm
http://www.secureidnews.com/news-item/nfc-is-the-bridge-from-cards-to-the-mobile/
http://www.secureidnews.com/news-item/nfc-is-the-bridge-from-cards-to-the-mobile/
http://www.nfcworld.com/nfc-phones-list/
http://www.cnet.com/news/apple-adds-nfc-to-iphone-6-with-apple-pay/
http://www.cnet.com/news/apple-adds-nfc-to-iphone-6-with-apple-pay/
http://www.juniperresearch.com/viewpressrelease.php?pr=483
http://www.juniperresearch.com/viewpressrelease.php?pr=483
http://www.idc.com/prodserv/smartphone-os-market-share.jsp


19. International Organization for Standardization: ISO/IEC 7816-5-2013: Identifica-
tion cards – IC cards – Part 5: Registration of application providers (2004)

20. Conway, J.H.: On Numbers and Games. Academic Press (1976)
21. Desmedt, Y.: Major security problems with the “unforgeable” (Feige-)Fiat-Shamir

proofs for identity and how to overcome them. In: Procs. 6th Worldwide Congress
on Computer and Comm. Security and Protection, SEDEP Paris (1988) 147–159

22. GlobalPlatform: GlobalPlatform Card Specification v2.2.1. [Online] (January
2011) http://www.globalplatform.org/specificationform.asp?fid=7512.

23. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical Relay Attack on
Contactless Transactions by Using NFC Mobile Phones. In: Proceedings of the
2012 Workshop on RFID and IoT Security. Volume 8., IOS Press (2012) 21–32

24. NFC Forum: NFC Controller Interface (NCI) Technical Specification – version 1.1.
Technical report, NFC Forum, Inc. (July 2014)

25. Korak, T., Hutter, M.: On the Power of Active Relay Attacks using Custom-Made
Proxies. In: Proceedings of the 2014 IEEE International Conference on RFID.
(2014) 126–133

26. Hancke, G.: A practical relay attack on ISO 14443 proximity cards. Technical
report, University of Cambridge (January 2005)

27. International Organization for Standardization: ISO/IEC 14443-4: Identification
cards – Contactless IC cards – Proximity cards – Part 4: Transmission protocol
(July 2008)

28. Sportiello, L., Ciardulli, A.: Long Distance Relay Attack. In: Proceedings of the
9th International Workshop on RFID: Security and Privacy Issues. Volume 8262
of LNCS., Springer Berlin Heidelberg (2013) 69–85

29. EMVco: Book D: Contactless Communication Protocol – version 2.4. Technical
report, EMVco, LLC (June 2014)

30. Emms, M., Arief, B., Little, N., van Moorsel, A.: Risks of Offline Verify PIN on
Contactless Cards. In: Financial Cryptography and Data Security. Volume 7859
of LNCS., Springer Berlin Heidelberg (2013) 313–321

31. Kfir, Z., Wool, A.: Picking Virtual Pockets using Relay Attacks on Contactless
Smartcard. In: Proceedings of the 1st International Conference on Security and
Privacy for Emerging Areas in Communications Networks. (2005) 47–58

32. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical NFC Peer-to-
Peer Relay Attack Using Mobile Phones. In: Proceedings of the 6th International
Workshop on RFID: Security and Privacy Issues. Volume 6370 of LNCS., Springer
Berlin Heidelberg (2010) 35–49

33. Verdult, R., Kooman, F.: Practical Attacks on NFC Enabled Cell Phones. In:
Proceedings of the 3rd International Workshop on NFC. (2011) 77–82

34. Roland, M., Langer, J., Scharinger, J.: Practical Attack Scenarios on Secure
Element-Enabled Mobile Devices. In: Proceedings of the 4th International Work-
shop on NFC. (2012) 19–24

35. Roland, M., Langer, J., Scharinger, J.: Relay Attacks on Secure Element-Enabled
Mobile Devices. In: IFIP Advances in Information and Communication Technology.
Volume 376., Springer Berlin Heidelberg (2012) 1–12

36. Roland, M., Langer, J., Scharinger, J.: Applying Relay Attacks to Google Wallet.
In: Proceedings of the 5th International Workshop on NFC. (2013) 1–6

37. NFC Forum: NFC Data Exchange Format (NDEF) Technical Specification –
NDEF 1.0. Technical report, NFC Forum, Inc. (July 2006)

38. Oren, Y., Schirman, D., Wool, A.: Range Extension Attacks on Contactless Smart
Cards. In: Procs. 18th European Symposium on Research in Computer Security.
Volume 8134 of LNCS., Springer Berlin Heidelberg (2013) 646–663

http://www.globalplatform.org/specificationform.asp?fid=7512

	Practical Experiences on NFC Relay Attacks with Android: Virtual Pickpocketing Revisited
	Introduction
	Background
	ISO/IEC 14443 Standard
	Relay Attacks and Mafia Frauds
	Evolution of NFC Support in Google's Android OS

	Practical Implementation Alternatives in Android
	Android NFC Architecture: NCI Stack
	Read/Write Operation Mode
	Host-Card Emulation Operation Mode
	Limitations and Discussion

	Relay Attack Implementation: Proof-of-Concept
	Proof-of-Concept Experiment
	Threat Scenarios
	Relay Attack Resistant Mechanisms

	Related Work
	Conclusions and Future Work


