Loophole: Timing Attacks on
Shared Event Loops 1n Chrome

Pepe Vila & Boris Kopf

IMDEA Software Institute

C X

About me

@cgvwzg
hitp://vwzqg.net/

Some notes about Chrome

Chrome was a blackbox for me.

lts code base is immense. How to start?

* Dev-lists: https://www.chromium.org/developers/technical-discussion-groups

* Design documents (living GoogleDocs)

* Bug track: https://bugs.chromium.org/p/chromium/issues/list

e Source code: https://cs.chromium.org/

https://www.chromium.org/developers/technical-discussion-groups
https://bugs.chromium.org/p/chromium/issues/list
https://cs.chromium.org/

Warning!

The author feels that this technique of deliberately lying will
actually make it easier for you to learn the ideas.

- Donald Knuth

Introduction

* Event-driven programming
* Event loops

* A timing side-channel on event loops

Introduction: Event-driven
programming

EDP is a programming paradigm for GUI, web clients,
networks, and server-side

The flow of the program is determined by events or messages

Examples:

* Nginx, Node.js or memcached
* Used for message passing: inter-(thread | process) communication

* HTMLS5 standard® mandates User Agents to use EDP

https://html.spec.whatwg.org/#event-loop

https://html.spec.whatwg.org/#event-loop

Introduction: Event Loops
Event loop, message dispatcher, message loop, run loop...

FIFO queue & dispatcher:

Q= [];

while (true) {
M = Q.shift();
process (M) ;

}

It queue is empty, waits until an event arrives

Blocking operations (e.g., database and network requests) are
handled asynchronously

Simple concurrency model for programmers

Introduction: Timing side-
channel on Event Loops

when shared between mutually distrusting programs

td

TTT T

Event loop execution

A tasks V tasks

“Loophole”

Roses are red,
Violets are blue,
o g Side-channels are sweet,
o ST And so are you.

- Taylor Swift

Chrome architecture

o Same Origin Policy (SOP)
* Multi-process

» Sharing Event Loops

Chrome architecture: SOP

Origin = (scheme, domain, port)

Origin 1 Origin 2

http://example.com:8080 http://example.com

http://mail.example.com | http://app.example.com

https://foo.example.com | https://foo.example.com
https://example.com http://example.com

Chrome architecture: Multi-process

BROWSER PROCESS

Main Thread w
/O Thread G
RENDERER A RENDERER B
MainThread o MainThread a
|OChildThread G |OChildThread G
CompositorThread G CompositorThread G

(Chrome’s Task Manager)

Chrome architecture: Sharing
Event Loops

Different policies for mapping applications into renderer
Processes (prOCGSS-per-S/te-/nStanCe, process-per-site, process-per-tab, single-

process)

A Site is a registered domain plus a scheme (1= SOP)

Sharing on the renderer*:
- iframes, linked navigation or |process| > T
- T =32for4 GB of RAM, and T = 70 for 8 GB or more

Sharing on the host process:

- one for all renderers
- |PC through host’s I/O thread

*Site Isolation Project: https://www.chromium.org/developers/design-documents/site-isolation

https://www.chromium.org/developers/design-documents/site-isolation

Chrome architecture: Sharing
Event Loops

Main thread of renderer processes

* resource parsing, style calculation, layout, painting and
Javascript

* cach JS task blocks the event loop for a while

e |f 2 (Oor more) pages share the process, the main
thread’s event loop Is shared

Chrome architecture: Sharing
Event Loops

I/0 thread of the host process

 manages IPC of all children renderers

 demultiplexes all Ul events to each corresponding
renderer

 multiplexes all network requests from renderers

* each task/message/event blocks the event loop
(signalling start and completion)

Chrome architecture: Sharing
Event Loops

Other event loops

 GPU process, workers, extensions...

Chrome architecture: Sharing
Event Loops

< C @ chrome://tracing

Record Save Load lrace.json.gz @@

| 705 ma

v Renderer (pid £0211). cavwag
HenderFrame
TopLevel

» RendererSchedulerldlePeriod s e e

v CrRendererMain ’ ”

~ Chrome_Child|OTnread l ” N II' IVEI | HIIII Wi

LayerTreeHostimpl::SetVisible
PendingTree:waiting PandingTiee waltng

v ScheduledTasks Aandanre |
Scheduler:pending_submit_frames

+ Compositor L — -

v CompositorTileWorker 1/24067 |

} CompoasitorTileWorker2/24579 T T T W

DEMO

Covert channel oy

—

“uln
b |osv

Ll LN 'l§|
'(NI'IZ! 'IZJ
aAre a9
zareing
zareing
sUreLny

L LR o
LU e
nareiag

c o

Spy on Shared Event Loops

A~

Malicious advertisement
<iframe>

g Kevylogger
</iframe> -~

| Sl

| Sl oswenn; | Sap |

el = 310

lirkng ¥

[ab popup
receyved L 2SO0 0000ag

T R L e P T s B e IR

BR

»= Mz reccivee: anlle!
Tre following pop-uoe were blocked on thie page:

[httpe:))roctedcon.com/

Always allmw pop-uns frem htpe/fvwzo.net

© Ccrtinue blocking pop-Jgs

Manags popr-up blacking. . [Fireshet

Spy on Shared Event Loops

But... How do we post tasks into these loops”?

Renderer’s main thread Host’s 1/0 thread

sethmeout network requests

postMessage SharedWorkers

NEW! ES7 async functions and iterators

Spy on Shared Event Loops

Renderer's main thread

function loop () {
self.postMessage (0, "*");
save (performance.now ()) ;

J

self.onmessage = 1oop;
self.postMessage (0, "*");

Allocate TypedArray -> ~25us resolution

Spy on Shared Event Loops

Host’s I/O thread

function loop () {
save (performance.now()) ;
fetch (new Request ("http://0/™))
.catch (loop);

J
Loop () ;

~500us resolution

Non routable |IPs

Spy on Shared Event Loops

e.g., we can do much better with SharedWorkers :D

onconnect = function (e) { '<-FXN79JS
let port = e.ports[0]
port.onmessage = function () {
port.postMessage (0) ;

J

let w = new SharedWorker ("pong.js");
function loop () {
save (performance.now ()) ;
w.port.postMessage (U) ;
J
w.port.onmessage = loop;

~100us resolution |15,y

Spy on Shared Event Loops

-vent-delay traces: 1s ~ 40.000 time measurements

Nolse sources:

e Just-in-time (JIT) compilation
e (Garbage Collection (GC)
* [hread interleaving

Attacks

 Web page identification
* Inter-keystroke timing information

e Covert channel

Attacks: Web page Identification

pomhub.corm

200 -
150 -
100 -
\
50 - fy \
[\ M|
0- o it Pl e el W e R R T e e = D
0 1000 2000 3000 4000 5000
amazon.com
200 -
E A
o R
g 100 - 'l' \ \\\
° (N, VI
+ 50 i
g \ J‘J \J \\
5 o P TS [SN P
0 1000 2000 3000 4000 5000
facebook.com
200
150 -
100 - \
A
\
0 - B e e i Tyt ' U,,AJ (W iy — i e — e e S——
0 1000 2000 3000 4000 5000

Time (Ms)

Attacks: Web page Identification

Feature extraction + Support Vector Machine (SVM)
VS.

Dynamic Time Warping (DTW)

Attacks: Web page Identification

DTW distance measure for time series: X = (X1,...,.Xn) and Y = (y1,...,

Robust against horizontal compressions and stretches (warping)

ooty DA ety

. : ¢ ‘ / %
Euclidean % DTW s

Find optimal alignment.

Cost O(n2) -> Use of constraints

Attacks: Web page Identification

120 80 40 O
IIIIIII

youtube.com
150 200 250

100

50

20

il ol

0 50 100 150 200 250
google.com

0 5 10

(Warping path between time series from google.com and youtube.com)

http://google.com
http://youtube.com

Attacks: Web page Identification

Experiments: Alexa’s Top 500, 30 traces for each main page during its
loading phase, on 2 ditferent machines, with multiple parameters.

Use ONE single trace of each page as training + 1-NN.

Sakoechiba - symmetricl Sakoechiba - asymmetric ltakura - sym metricl
100% - 100% - 100% -
75% - — — = 75% - 75% -
50% -] il i 509% - = — | - | | i 50% - 5
B - 5 TraceDuration
25% - 25% - 25% - 10 . 1s
20 | 2
0% - 0% - 0% - . 50 4s
i 5 0 s 50 100 i 5 0 s s0 100 1
WindowSize WindowSize WindowSize

(Extract from tuning results on the renderer’s data from a Linux machine)

Attacks: Inter-keystroke timing information

User actions block event loops (even without any
explicit JS listener): mouse movement, scrolling, clicks,
etc., are generally recognisable;:

0.10

0.0 l

0.02 I

0.0/

0.05 L ’

0.05 v} l ‘ r“k

0.04 \ Wv.\mwmmwnmllmm’u;m (o rwrm v s e e Yo o e
0.03

0.02

0.01
1435.0C0 1440 00C 1245.000 1420.000

DEMO

Event-delay pattern caused by mouse movement (on a different tab): 0.1ms delay, 125Hz frequency

1,700 1.0 1470 1.C0 1,870 2.0 2200 24

Specific page’s event handlers cause different event-delay
patterns.

Attacks: Inter-keystroke timing information

Event-delay pattern of a keystroke In
Google’s OAuth login form popup

&350 =
.80
0.70

wl
wmw.m«wwmmMfwmw f v N*"' ﬂ “M'.wwwWA'MuMMWW.MMMWMM

SO73.000 £230.200 5085.000 S020.02C 2093.0C0 S100.000 $05.2XC

Keydown Javascript listener followed by keypress.

Attacks: Inter-keystroke timing information

Experiment:

* 10.000 passwords from rockyou.txt
* emulate keystrokes with random delays (100-300ms)
* get keystroke’s timestamps from event-delay trace

<«» Q0 >

Login to see kittens...

GGGGG

Attacks: Inter-keystroke timing information

Javascript code to extract keystrokes from a trace:

const L = , U = , keys = []; Many Research
Wow. ‘t, .‘
for (let 1 =1; 1< trace.length-1; 1i++) { (VeryB
let dl = trace[i]-trace[1-1], . %
d2 = trace [1+]l]-trace[1]; 0

' -' "ROW.
if (L<d1<U && L<d1<U) { co

keys.push (tracel[1]); §
} So Skill

Ju .AJl.b_.a_

91.5% correct password’s length (with 1.5% of false positives)

2.2% miss one or more keystrokes
0.3% detect spurious keystroke

Attacks: Covert channel

< C ®

hello! . Send

N 350

sending 'h': 01101000

sending 'e': 01100101

sending 'l': 01101100 § | Startlistening || Stop
sending 'l': 01101100

sending 'o': 01101111 _
sending '!': oolooool | Hreshold =30.0
sending '': 00000000 Debug ¥
sending '': 00000000

sending '': 10000000

listening...
recelved:38.39500000000044

recelved:37.904999999998836

>> msqg received: hello!

DEMO: https://www.youtube.com/watch?v=IIndCZmRDmI

See https://github.com/cgvwzqg/sop-covert-channels for other funny covert channels :D

https://github.com/cgvwzq/sop-covert-channels

LoopScan tool

o Simple ugly HTML page for monitoring event loops (with only JS)
e D3.js for interactive visualisations with minimap, zooming and scrolling

e Allows to easily identity event-delay patterns

. .. DEMO

| | ol l,..)
I ' LA PSS s ecorm et t ek SOk oo s g 1o
‘L/__'\’ "“"\".wyl‘w" | L (L | | | J”-_‘. }""1 "." \

| Yl
1L J WU LA AU AU
LU LA G L LT \h VAT L

I'll try to publish it soon.

Any volunteer for a logo?

Countermeasures

* Rate Limiting: at which tasks can be posted (reactive detection?)
 Reduce Clock Resolution: useless...
* Full Isolation: see Site Isolation Project

 CPU Throttling: implemented in Chrome 55

Side Channels are usually hard to mitigate without impacting performance.

Future..

Other browsers?

* Firefox implements a different multi-process architecture, but
some preliminary experiments indicate a similar behaviour

* Microsoft Edge? Servo”? Safari?

Improve attacks and measurements

Different environments”?

Thanks. Q7

