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Systematic study of the problem of finding eviction sets

Find eviction sets in O(n) compared to previous O(n2)

Reliability and performance evaluation
of algorithms in real hardware
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Until we find an element C such 
that when removed the remaining 

set stops being an eviction set:

TEST(S\{C}) = False
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ASSOCIATIVITY many elements 

representing the eviction set’s core!
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Blood samples

(4 group tests + 
3 individual tests )

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Generalization by Peter Damaschke (2006):

- Positive test if at least “u” defectives
- Negative test if at most “l” defectives
- Random answer otherwise

Observation: Our test is a threshold 

group test!
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We find our minimal eviction set!

ASSOCIATIVITY

S :



Group-testing algorithm

ASSOCIATIVITY

S :

O(N) mem accesses



Tool (C/x86): 
https://github.com/cgvwzq/evsets

O(n) vs. O(n2) advantage shows up in 
practice!

Finding minimal eviction sets is 
practical without knowledge on any bits 
of the set index!

Y-right (lines): Average running time for eviction set reduction
Y-left  (columns): Cost of finding an initial eviction set of certain size
X: Eviction set size in number of addresses

Experiments on Skylake  i5-6500 with 6MB cache (8192 sets x 12 assoc)

timeout

Performance Evaluation

https://github.com/cgvwzq/evsets


Robustness Evaluation

Modern replacement policies break our test assumption and introduce errors.

X: Cache set offset (each points aggregates all slices)
Y: Average success rate for

Green: reduction rate w/o error correcting mechanisms. Yellow: Test rate reliability

Experiments on Skylake  i5-6500 with 6MB cache (8192 sets x 12 assoc)



Live demo (Bonus Material!) 

Find minimal eviction sets on Chrome with JS and Wasm

Demo running on Chrome 74.0.3729.75 with V8 7.4 - CPU i7-8550U 



Conclusions

Finding minimal eviction sets is a threshold group-testing problem: 
new insight for research on principled countermeasures

Novel linear-time algorithm makes attacks faster and 
enables them in scenarios previously considered impractical



Thanks for your attention

Questions?



Noise on difference machines and cache sets



run.sh:

google-chrome-beta --user-data-dir=/tmp/tmp.u9lo18kaTh 
--js-flags='--allow-natives-syntax --experimental-wasm-bigint' 
http://localhost:8000/ | ./verify_addr.sh

--allow-natives-syntax: used for printing found indices to stdout
--experimental-wasm-bigint: only for convenience, will have default support soon

--------------------------------------------------------------------------------------------------------------------------------------------------
verify_addr.sh:

- find chrome’s PID
- use pmap to find base virtual address for JS buffer
- read JS indices and add them to virtual address base
- execute ./virt_to_phys to translate virtual to physical addresses using /proc/pid/pagemap
- extract slice and cache index set from physical address (uses Intel’s reverse engineered hash function)

Demo verification scripts



0  55             push rbp
1  4889e5         movq rbp,rsp
4  6a0a           push 0xa
6  56             push rsi
7  4883ec10       subq rsp,0x10
b  488b9ea7000000 movq rbx,[rsi+0xa7]
12 6666660f1f840000000000 nop
1d 0f1f00         nop
20 488b96c7000000 movq rdx,[rsi+0xc7]
27 483922         cmpq [rdx],rsp
2a 0f8340000000   jnc <+0x70>
30 8bc0           movl rax,rax
32 49ba0000000001000000 movq r10,0x100000000
3c 4c3bd0         cmpq r10,rax
3f 7320           jnc <+0x61>

...
61 488b0403       movq rax,[rbx+rax*1]
65 4883f800       cmpq rax,0x0
69 75b5           jnz <+0x20>
6b 488be5         movq rsp,rbp
6e 5d             pop rbp
6f c3             retl

TurboFan x86_64 output

(func $x (param $ptr i64)
  (loop $iter
    (set_local $ptr
      (i64.load
        (i32.wrap/i64 (get_local $ptr))))
    (br_if $iter
      (i32.eqz (i64.eqz (get_local $ptr)))))
)
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(on V8 v7.4.0)Example of TEST() in Wasm


