Theory and Practice of
Finding Eviction Sets

Pepe Vila Boris Kopf José F. Morales
IMDEA Software Institute Microsoft Research IMDEA Software Institute

@ vwzg.net
g (@cgvwzq

github.com/cgvwzq

Microsoft

Eviction Sets

|

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

|

CACHE

SLICEO

AjIA13EIDOSSE

AjIA13RID0SSE

Eviction Sets

|

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

|

CACHE

SLICEO

AjIA13EIDOSSE

AjIA13RID0SSE

Eviction Sets

|

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

|

CACHE

SLICEO

AjIA13EIDOSSE

AjIA13RID0SSE

Eviction Sets

|

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

CACHE

|

Find associativity many colliding addresses:
i.e. an eviction set

SLICEO

AjIA13EIDOSSE

AjIA13RID0SSE

Attacks

{ Efficient attacks require small eviction sets }

Attacks

[Efficient attacks require small eviction sets }

Prime+Probe

Attacks

Efficient attacks require small eviction sets

Prime+Probe
Rowhammer

Attacks

Spectre

Efficient attacks require small eviction sets

Prime+Probe
Rowhammer

Problem

-

_

Potentially unknown
mapping from
physical address to
cache set

~

PHYSICAL MEMORY

/

CACHE
SUICEO .
___________ sets_________i
SUCEY

AjIA13EIDOSSE

AjIA13RID0SSE

Problem

Vs

.

Unknown translation from virtual to physical addresses]

USER PROCESS

text

heap

stack

low

high

PHYSICAL MEMORY

CACHE

SLICEO

AjIA13EIDOSSE

AjIA13RID0SSE

Problem

USER PROCESS

<script>

var foo = new Uint32Array (N);

foo[l2];

</script>

text heap stack

low

high

[In some scenarios, even unknown virtual address]

PHYSICAL MEMORY

CACHE
SLICEO .
S sets |
Sticer o
| sets |

AjIA13EIDOSSE

AjIA13RID0SSE

Problem

USER PROCESS PHYSICAL MEMORY CACHE
— SLICEO .
<script> i
var foo = new Uint32Array (N) ; T T T
foo[l2];

</script>

Find associativity many elements (e.g. JS

--------------- array indices) that collide in cache.

text heap stack ! sets

low high

AjIA13EIDOSSE

AjIA13RID0SSE

Contributions

[Systematic study of the problem of finding eviction sets}

Contributions

[Systematic study of the problem of finding eviction sets}

[Find eviction sets in O(n) compared to previous O(n?) }

Contributions

[Systematic study of the problem of finding eviction sets}

[Find eviction sets in O(n) compared to previous O(n?) }

Reliability and performance evaluation
of algorithms in real hardware

Finding minimal eviction sets

‘ /Find a large eviction set for an address V-

- Pick “enough” addresses at random

O
_ Timing test: av aO a1 an av

Finding minimal eviction sets

‘ /Find a large eviction set for an address V-

- Pick “enough” addresses at random

O
- Timing test: av aO a1 an av

{Reduce initial large eviction set into its minimal core

Finding minimal eviction sets

‘ /Find a large eviction set for an address V-

- Pick “enough” addresses at random

O
- Timing test: av aO a1 an av

[Reduce initial large eviction set into its minimal core

Baseline algorithm

Start with large enough eviction set
S of size N

A —
[|

Baseline algorithm

Pick candidate element C, and

Test if remaining set TEST(S{C}) is
still an eviction set

L —
[\

Baseline algorithm

If TEST(S{C}) = True, discard C

A —
[\

3

~”
Y S

b

Baseline algorithm

and continue with N’=N-1

A —
[\

Baseline algorithm

We repeat this process several
times

A —
[|

3

~”
Y S

b

Baseline algorithm

We repeat this process several
times

A —
[|

3

~”
Y S

b

Baseline algorithm

We repeat this process several
times

1 —
[\

3

~”
Y S

b

Baseline algorithm

We repeat this process several
times

1 —
[|

3

~”
Y S

b

Baseline algorithm

Until we find an element C such
that when removed the remaining
set stops being an eviction set:

TEST(S\{C}) = False

1 —
[|

Baseline algorithm

We learn that C is part of the
minimal core

1 —
[|

Baseline algorithm

We keep track of it, and insert it
againin S

‘ —
[|

Baseline algorithm

We repeat this process several
times

A —
[|

3

~”
Y S

b

Baseline algorithm

We repeat this process several
times

‘ —
[|

3

~”
Y S

b

Baseline algorithm

We repeat this process several
times

A —
[|

Baseline algorithm

We repeat this process several
times

A —
[|

Baseline algorithm

We repeat this process several
times

1 —
[|

Baseline algorithm

We repeat this process several
times

A —
[|

Baseline algorithm

We repeat this process several
times

1 —
[|

3

~”
Y S

b

Baseline algorithm

We repeat this process several
times

1 —
[|

3

~”
Y S

b

Baseline algorithm

We repeat this process several
times

N,
| 1 | P

3

~”
Y S

b

Baseline algorithm

We repeat this process several
times

1 —
[\

Baseline algorithm

Until we have identified
ASSOCIATIVITY many elements
representing the eviction set’s core!

x —

ASSOCIATIVITY

Baseline algorithm

O(N?) memory accesses

ASSOCIATIVITY

Threshold Group Testing

®
e _® ® e (10individual tests)
[Group testing problem by Robert Dorfman (1943) J o @ ©

Blood samples

Threshold Group Testing

(4 group tests +
[Group testing problem by Robert Dorfman (1943) J 3individual tests)

Blood samples

Threshold Group Testing

g (4 group tests +
[Group testing problem by Robert Dorfman (1943) J 3individual tests)

Blood samples
a N

Generalization by Peter Damaschke (2006):

- Positive test only if at least “u” defectives
- Negative test only if at most “I” defectives
- Random otherwise

_ /

Threshold Group Testing

yup tests +

[Group testing problem by Robert Dorfmany idual tests)

-

Generalization by Peis

P

0))

Ra

Group-testing algorithm

Start with large enough eviction set
S of size N

A —
[|

Group-testing algorithm

Split S in ASSOCIATIVITY+1
subsets

A —
[|

Group-testing algorithm

In the worst case, there exists a
union of ASSOCIATIVITY subsets
being an eviction set

L —
[|

Group-testing algorithm

We can discard
N/(ASSOCIATIVITY+1) elements
per iteration

A —
[|

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

1 —
[\

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

1 —
[\

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

A —
[|

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

A —
[|

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

A —
[|

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

A —
[|

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

A —
[\

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

A _

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

A —
[|

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

A —
[|

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

" ——

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

" ——

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

=

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

" ——

Group-testing algorithm

We find our minimal eviction set!

ASSOCIATIVITY

l —

s: |

Group-testing algorithm

ASSOCIATIVITY

O(N) mem accesses

s: |

Performance Evaluation ...

/Tool (C/x86):

https://github.com/cgvwzqg/evsets

O(n) vs. O(n?) advantage shows up in
practice!

Finding minimal eviction sets is

\jthe set index!

practical without knowledge on any bits ™

~

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)

Numer of sets tried

/

/

4 Group Baseline l Tries until eviction set
| | r0.3
] 0.2
2004
T 0.1
0 . b & 2 A A 4 A A A A A A : A A A 0.0
50 100 150 200 250 300 350 400
20
300 - 4KB pages (y=6)
- 15
200 o
- 10 §
100
| I 5 &
0 T T T A A A A f A A A A ? A A A A % A A A A { A A A A ?
500 1000 1500 2000 2500 3000 3500 4000
2000
Limit (y=0)
6004 = - 1500
4004 1000
2004——H8-& 500
A 4 u 4 A 4 A 4 A 4 A 4 0
30000 40000 50000 60000 70000 80000
Set size

Y-right (lines): Average running time for eviction set reduction
Y-left (columns): Cost of finding an initial eviction set of certain size
X: Eviction set size in number of addresses

https://github.com/cgvwzq/evsets

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)

Robustnhess Evaluation

Modern replacement policies break our test assumption and introduce errors.

Rate

Skylake - stride=4KB

1.0 1 pm Eviction
I Reduction
0.8 1
0.6 4
0.4
0.2 1
0.0 -
0 33 132 165 264 297 396 429 528 561 660 693 792 825 924 957
Set Offset

X: Cache set offset (each points aggregates all slices)

Y: Average success rate for
Green: reduction rate w/o error correcting mechanisms. Yellow: Test rate reliability

Demo running on Chrome 74.0.3729.75 with V8 7.4 - CPU i7-8550U

Live demo (Bonus Material!) @®

[Find minimal eviction sets on Chrome with JS and Wasm J

Conclusions

Finding minimal eviction sets is a threshold group-testing problem:
new insight for research on principled countermeasures

Novel linear-time algorithm makes attacks faster and
enables them in scenarios previously considered impractical

Thanks for your attention

[Questions? }

naie

Noise on difference machines and cache sets

0.8 1

0.6 1

0.4 4

0.2 4

0.0 1

Skylake - 2MB pages

Skylake - 4KB pages

1.0 4 ~] T T
0.8 1 1
w Theo
0.6 4 4 1
2 Evicii 2
© -_ T
K] viction &
0.4 4 . g
«+++ Reduction
0.2 1 1
0.0 4 E
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Set Size Set Size
Haswell - 2MB pages Haswell - 4KB pages Skylake - 2MB pages Skylake - 4KB pages
1.0]
0.8
061
° ° e
@ © ©
& e .0 &
02
0.0
0 25 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 400
Set Size Set Size Set Size Set Size

Demo verification scripts

run.sh:

google-chrome-beta --user-data-dir=/tmp/tmp.u9lol8kaTh
--js-flags='--allow-natives-syntax --experimental-wasm-bigint'
http://localhost:8000/ | ./verify addr.sh

--allow-natives-syntax: used for printing found indices to stdout
--experimental-wasm-bigint: only for convenience, will have default support soon

verify addr.sh:

- find chrome’s PID

- use pmap to find base virtual address for JS buffer

- read JS indices and add them to virtual address base

- execute ./virt to phys to translate virtual to physical addresses using /proc/pid/pagemap

- extract slice and cache index set from physical address (uses Intel’s reverse engineered hash function)

Example of TEST() in Wasm (on V8 v7.4.0)

TurboFan x86 64 output

traverse.wat
[1
(func $x (param S$ptr i64) i 0 55 push rbp i
(loop Siter 1 1 4889e5 movqg rbp, rsp 2
(set_local $ptr i 4 6a0a push Oxa g i
(i64.1load 16 56 push rsi g
(i32.wrap/i64 (get local S$ptr)))) 17 4883eclO subg rsp,0x10 !
(br if $Siter i b 488b9%ea7000000 movqg rbx, [rsi+0xa7] 1
(i32.eqgz (i64.egz (get local $ptr))))) i 12 6666660£1£840000000000 nop i
) I'1d 0£1£00 nop !
1 20 488b96c7000000 > movqg rdx, [rsi+0xc7]] x_D:
527 483922 cmpqg [rdx], rsp - 8 §i
' 2a 0£8340000000 Jjnc <+0x70> | @ m:
1 30 8bcO movl rax,rax 1%
i 32 49pa0000000001000000 movqg rl0,0xlOOOOOOOO_% i
! 3c 4c3bdo cmpg rl0, rax g !
I 3f 7320 jnc <+0x61> Z @ 1
1 1
61 48800403 E movq rax, [rbx+rax*1]
' 65 4883£800 cmpg rax, 0x0 |
| 69 75b5 \— Jjnz <+0x20> !
i 6b 488be5 ® movq rsp, rbp :
i 6e 5d :g pop rbp i
' 6f c3 o) retl !
1 1

