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Eviction Sets

|

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

CACHE

|

Find associativity many colliding addresses:
i.e. an eviction set
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Problem

USER PROCESS

<script>

var foo = new Uint32Array (N);

foo[l2];

</script>

text heap stack
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Problem

USER PROCESS PHYSICAL MEMORY CACHE
— SLICEO .
<script> i
var foo = new Uint32Array (N) ; T T T
foo[l2];

</script>

Find associativity many elements (e.g. JS

--------------- array indices) that collide in cache.
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Reliability and performance evaluation
of algorithms in real hardware
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Baseline algorithm

Start with large enough eviction set
S of size N
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Baseline algorithm

Pick candidate element C, and

Test if remaining set TEST(S{C}) is
still an eviction set
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If TEST(S{C}) = True, discard C
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Baseline algorithm

Until we find an element C such
that when removed the remaining
set stops being an eviction set:

TEST(S\{C}) = False
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Baseline algorithm

We learn that C is part of the
minimal core
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Baseline algorithm

We keep track of it, and insert it
againin S
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Baseline algorithm

We repeat this process several
times
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Baseline algorithm

Until we have identified
ASSOCIATIVITY many elements
representing the eviction set’s core!
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Baseline algorithm

O(N?) memory accesses

ASSOCIATIVITY




Threshold Group Testing

®
e _® ® e  (10individual tests)
[Group testing problem by Robert Dorfman (1943) J o @ ©

Blood samples



Threshold Group Testing

(4 group tests +
[Group testing problem by Robert Dorfman (1943) J 3individual tests)

Blood samples




Threshold Group Testing

g (4 group tests +
[Group testing problem by Robert Dorfman (1943) J 3individual tests)

Blood samples
a N

Generalization by Peter Damaschke (2006):

- Positive test only if at least “u” defectives
- Negative test only if at most “I” defectives
- Random otherwise
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Threshold Group Testing

yup tests +

[Group testing problem by Robert Dorfmany idual tests)
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Group-testing algorithm

Start with large enough eviction set
S of size N
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Group-testing algorithm

Split S in ASSOCIATIVITY+1
subsets
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Group-testing algorithm

In the worst case, there exists a
union of ASSOCIATIVITY subsets
being an eviction set
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Group-testing algorithm

We can discard
N/(ASSOCIATIVITY+1) elements
per iteration
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Group-testing algorithm

We find our minimal eviction set!
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Group-testing algorithm
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Performance Evaluation ...

/Tool (C/x86):

https://github.com/cgvwzqg/evsets

O(n) vs. O(n?) advantage shows up in
practice!

Finding minimal eviction sets is

\jthe set index!

practical without knowledge on any bits ™

~

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)
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https://github.com/cgvwzq/evsets

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)

Robustnhess Evaluation

Modern replacement policies break our test assumption and introduce errors.

Rate

Skylake - stride=4KB

1.0 1 pm Eviction
I Reduction
0.8 1
0.6 4
0.4
0.2 1
0.0 -
0 33 132 165 264 297 396 429 528 561 660 693 792 825 924 957
Set Offset

X: Cache set offset (each points aggregates all slices)

Y: Average success rate for
Green: reduction rate w/o error correcting mechanisms. Yellow: Test rate reliability



Demo running on Chrome 74.0.3729.75 with V8 7.4 - CPU i7-8550U

Live demo (Bonus Material!) @®

[ Find minimal eviction sets on Chrome with JS and Wasm J




Conclusions

Finding minimal eviction sets is a threshold group-testing problem:
new insight for research on principled countermeasures

Novel linear-time algorithm makes attacks faster and
enables them in scenarios previously considered impractical




Thanks for your attention

[ Questions? }
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Noise on difference machines and cache sets
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Demo verification scripts

run.sh:

google-chrome-beta --user-data-dir=/tmp/tmp.u9lol8kaTh
--js-flags='--allow-natives-syntax --experimental-wasm-bigint'
http://localhost:8000/ | ./verify addr.sh

--allow-natives-syntax: used for printing found indices to stdout
--experimental-wasm-bigint: only for convenience, will have default support soon

verify addr.sh:

- find chrome’s PID

- use pmap to find base virtual address for JS buffer

- read JS indices and add them to virtual address base

- execute ./virt to phys to translate virtual to physical addresses using /proc/pid/pagemap

- extract slice and cache index set from physical address (uses Intel’s reverse engineered hash function)




Example of TEST() in Wasm (on V8 v7.4.0)

TurboFan x86 64 output

traverse.wat
[ 1
(func $x (param S$ptr i64) i 0 55 push rbp i
(loop Siter 1 1 4889e5 movqg rbp, rsp 2
(set_local $ptr i 4 6a0a push Oxa g i
(i64.1load 16 56 push rsi g
(i32.wrap/i64 (get local S$ptr)))) 17 4883eclO subg rsp,0x10 !
(br if $Siter i b 488b9%ea7000000 movqg rbx, [rsi+0xa7] 1
(i32.eqgz (i64.egz (get local $ptr))))) i 12 6666660£1£840000000000 nop i
) I'1d 0£1£00 nop !
1 20 488b96c7000000 >  movqg rdx, [rsi+0xc7] ] x_D:
527 483922 cmpqg [rdx], rsp - 8 §i
' 2a 0£8340000000 Jjnc <+0x70> | @ m:
1 30 8bcO movl rax,rax 1%
i 32 49pa0000000001000000 movqg rl0,0xlOOOOOOOO_% i
! 3c 4c3bdo cmpg rl0, rax g !
I 3f 7320 jnc <+0x61> Z @ 1
1 1
61 48800403 E movq rax, [rbx+rax*1]
' 65 4883£800 cmpg rax, 0x0 |
| 69 75b5 \— Jjnz <+0x20> !
i 6b 488be5 ® movq rsp, rbp :
i 6e 5d :g pop rbp i
' 6f c3 o) retl !
1 1



