
Theory and Practice of
Finding Eviction Sets

Pepe Vila Boris Köpf José F. Morales
IMDEA Software Institute Microsoft Research IMDEA Software Institute

vwzq.net

@cgvwzq

github.com/cgvwzq

Eviction Sets

CACHE

SLICE 0

sets

asso
ciativity

SLICE 1

sets

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

asso
ciativity

Eviction Sets

CACHE

SLICE 0

sets

asso
ciativity

SLICE 1

sets

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

asso
ciativity

Eviction Sets

CACHE

SLICE 0

sets

asso
ciativity

SLICE 1

sets

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

asso
ciativity

Eviction Sets

CACHE

SLICE 0

sets

asso
ciativity

SLICE 1

sets

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

asso
ciativity

Find associativity many colliding addresses:
i.e. an eviction set

Attacks

Efficient attacks require small eviction sets

Attacks

Prime+Probe

Efficient attacks require small eviction sets

Attacks

Prime+Probe Rowhammer

Efficient attacks require small eviction sets

Attacks

Prime+Probe Rowhammer

Spectre
Efficient attacks require small eviction sets

Problem

PHYSICAL MEMORY CACHE

SLICE 0

sets

SLICE 1

sets

asso
ciativity

asso
ciativity

Potentially unknown
mapping from

physical address to
cache set

Problem

MMU

text heap stack

low high

USER PROCESS PHYSICAL MEMORY CACHE

SLICE 0

sets

SLICE 1

sets

Unknown translation from virtual to physical addresses

asso
ciativity

asso
ciativity

Problem

<script>
var foo = new Uint32Array(N);
foo[12];
...
</script>

text heap stack

low high

USER PROCESS

MMU

PHYSICAL MEMORY CACHE

SLICE 0

sets

SLICE 1

sets

In some scenarios, even unknown virtual address

asso
ciativity

asso
ciativity

Problem

<script>
var foo = new Uint32Array(N);
foo[12];
...
</script>

text heap stack

low high

USER PROCESS

MMU

PHYSICAL MEMORY CACHE

SLICE 0

sets

SLICE 1

sets

Find associativity many elements (e.g. JS
array indices) that collide in cache.

asso
ciativity

asso
ciativity

Contributions

Systematic study of the problem of finding eviction sets

Contributions

Find eviction sets in O(n) compared to previous O(n2)

Systematic study of the problem of finding eviction sets

Contributions

Systematic study of the problem of finding eviction sets

Find eviction sets in O(n) compared to previous O(n2)

Reliability and performance evaluation
of algorithms in real hardware

Find a large eviction set for an address V:

- Pick “enough” addresses at random

- Timing test:

Finding minimal eviction sets

1

Find a large eviction set for an address V:

- Pick “enough” addresses at random

- Timing test:

Finding minimal eviction sets

Reduce initial large eviction set into its minimal core

2

1

Find a large eviction set for an address V:

- Pick “enough” addresses at random

- Timing test:

Finding minimal eviction sets

Reduce initial large eviction set into its minimal core

2

1

Baseline algorithm

N

S :

Start with large enough eviction set
S of size N

Baseline algorithm

N’

S :

Pick candidate element C, and

Test if remaining set TEST(S\{C}) is
still an eviction set

Baseline algorithm

S :

If TEST(S\{C}) = True, discard C

N’

Baseline algorithm

N’

S :

and continue with N’=N-1

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

Until we find an element C such
that when removed the remaining

set stops being an eviction set:

TEST(S\{C}) = False

Baseline algorithm

N’

S :

We learn that C is part of the
minimal core

Baseline algorithm

N’

S :

We keep track of it, and insert it
again in S

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

Until we have identified
ASSOCIATIVITY many elements

representing the eviction set’s core!

ASSOCIATIVITY

Baseline algorithm

S :

O(N2) memory accesses

ASSOCIATIVITY

N’

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Blood samples

(10 individual tests)

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Blood samples

(4 group tests +
3 individual tests)

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Generalization by Peter Damaschke (2006):

- Positive test only if at least “u” defectives
- Negative test only if at most “l” defectives
- Random otherwise

Blood samples

(4 group tests +
3 individual tests)

Blood samples

(4 group tests +
3 individual tests)

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Generalization by Peter Damaschke (2006):

- Positive test if at least “u” defectives
- Negative test if at most “l” defectives
- Random answer otherwise

Observation: Our test is a threshold

group test!

Group-testing algorithm

N

S :

Start with large enough eviction set
S of size N

Group-testing algorithm

N

S :

Split S in ASSOCIATIVITY+1
subsets

Group-testing algorithm

N

S :

In the worst case, there exists a
union of ASSOCIATIVITY subsets

being an eviction set

Group-testing algorithm

N

S :

We can discard
N/(ASSOCIATIVITY+1) elements

per iteration

Group-testing algorithm

N’

S :

We repeat this process until we
have ASSOCIATIVITY many

elements

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We find our minimal eviction set!

ASSOCIATIVITY

S :

Group-testing algorithm

ASSOCIATIVITY

S :

O(N) mem accesses

Tool (C/x86):
https://github.com/cgvwzq/evsets

O(n) vs. O(n2) advantage shows up in
practice!

Finding minimal eviction sets is
practical without knowledge on any bits
of the set index!

Y-right (lines): Average running time for eviction set reduction
Y-left (columns): Cost of finding an initial eviction set of certain size
X: Eviction set size in number of addresses

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)

timeout

Performance Evaluation

https://github.com/cgvwzq/evsets

Robustness Evaluation

Modern replacement policies break our test assumption and introduce errors.

X: Cache set offset (each points aggregates all slices)
Y: Average success rate for

Green: reduction rate w/o error correcting mechanisms. Yellow: Test rate reliability

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)

Live demo (Bonus Material!)

Find minimal eviction sets on Chrome with JS and Wasm

Demo running on Chrome 74.0.3729.75 with V8 7.4 - CPU i7-8550U

Conclusions

Finding minimal eviction sets is a threshold group-testing problem:
new insight for research on principled countermeasures

Novel linear-time algorithm makes attacks faster and
enables them in scenarios previously considered impractical

Thanks for your attention

Questions?

Noise on difference machines and cache sets

run.sh:

google-chrome-beta --user-data-dir=/tmp/tmp.u9lo18kaTh
--js-flags='--allow-natives-syntax --experimental-wasm-bigint'
http://localhost:8000/ | ./verify_addr.sh

--allow-natives-syntax: used for printing found indices to stdout
--experimental-wasm-bigint: only for convenience, will have default support soon

--
verify_addr.sh:

- find chrome’s PID
- use pmap to find base virtual address for JS buffer
- read JS indices and add them to virtual address base
- execute ./virt_to_phys to translate virtual to physical addresses using /proc/pid/pagemap
- extract slice and cache index set from physical address (uses Intel’s reverse engineered hash function)

Demo verification scripts

0 55 push rbp
1 4889e5 movq rbp,rsp
4 6a0a push 0xa
6 56 push rsi
7 4883ec10 subq rsp,0x10
b 488b9ea7000000 movq rbx,[rsi+0xa7]
12 6666660f1f840000000000 nop
1d 0f1f00 nop
20 488b96c7000000 movq rdx,[rsi+0xc7]
27 483922 cmpq [rdx],rsp
2a 0f8340000000 jnc <+0x70>
30 8bc0 movl rax,rax
32 49ba0000000001000000 movq r10,0x100000000
3c 4c3bd0 cmpq r10,rax
3f 7320 jnc <+0x61>

...
61 488b0403 movq rax,[rbx+rax*1]
65 4883f800 cmpq rax,0x0
69 75b5 jnz <+0x20>
6b 488be5 movq rsp,rbp
6e 5d pop rbp
6f c3 retl

TurboFan x86_64 output

(func $x (param $ptr i64)
 (loop $iter
 (set_local $ptr
 (i64.load
 (i32.wrap/i64 (get_local $ptr))))
 (br_if $iter
 (i32.eqz (i64.eqz (get_local $ptr)))))
)

traverse.wat

si
gn

 c
he

ck
st

ac
k

gu
ar

d

ep
ilo

gu
e

pr
ol

og
ue

(on V8 v7.4.0)Example of TEST() in Wasm

