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● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)
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● Memory partitioned in memory blocks (64 bytes = 26)
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Caches: their importance and impact
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Problem: cache as a black box

BLACKBOX CACHE
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Our approach for learning replacement policies
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int missIdx (int[4] state)
  for(int i = 0; i < 4; i = i + 1)
    if(state[i] == 3)
      return i;

1234



CacheQuery: a hardware interface
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CacheQuery: a 
hardware interface
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Polca: a cache automaton abstraction
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int missIdx (int[4] state)
  for(int i = 0; i < 4; i = i + 1)
    if(state[i] == 3)
      return i;

Polca: a cache policy automaton abstraction
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Polca: a cache policy automaton abstraction
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Caches: those little although faster friends...
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LearnLib: an automata learning framework
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int missIdx (int[4] state)
  for(int i = 0; i < 4; i = i + 1)
    if(state[i] == 3)
      return i;
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LearnLib: an automata learning framework
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● LearnLib  is an open source Java framework for automata learning developed at the TU Dortmund - 
https://learnlib.de/

● Angluin’s L* algorithm has been extended to Mealy machines:

○ Membership queries replaced by output queries

○ Equivalence queries approximated by test sequences for conformance testing

○ Reset sequence is bootstrapping problem, we solve it with Flush+Refill

WP-method: test sequence selection - given an upper bound on the 
number of states of the System Under Learning (SUL), guarantees 
equivalence

https://learnlib.de/


Sketch: synthesizing programs as explanations
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int missIdx (int[4] state)
  for(int i = 0; i < 4; i = i + 1)
    if(state[i] == 3)
      return i;
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Sketch: synthesizing programs as explanations
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Sketch: synthesizing programs as explanations
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Domain knowledge or high-level view of a replacement policy:

● Each block has an associated age

● Promotion rule decides how the ages are updated upon a hit

● Replacement rule decides which block is evicted upon a miss

● Insertion rule decides the age of a new block

We use it to “sketch” a template for replacement policies
and encode the automaton’s output and transition functions as constraints!
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Sketch: synthesizing programs as explanations
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hit (state, line) :: States×Lines → States
  state = promote(state, line)
  state = normalize(state, line)
  return state

miss (state) :: States → States×Lines
  Lines idx = -1
  state = normalize(state, idx)
  idx = evict(state)
  state[idx] = insert(state, idx)
  state = normalize(state, idx)
  return ⟨state, idx⟩
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Sketch: synthesizing programs as explanations
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hit (state, line) :: States×Lines → States
  state = promote(state, line)
  state = normalize(state, line)
  return state

miss (state) :: States → States×Lines
  Lines idx = -1
  state = normalize(state, idx)
  idx = evict(state)
  state[idx] = insert(state, idx)
  state = normalize(state, idx)
  return ⟨state, idx⟩

promote (state, pos) :: States×Lines → States
  States final = state
  if (??{boolExpr(state[pos])})
    final[pos] = ??{natExpr(state[pos])}
  for(i in Lines)
    if(i != pos ∧ ??{boolExpr(state[pos], state[i])})
      final[i] = ??{natExpr(state[i])}
  return final
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Results
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Results
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int[4] hitState (int[4] state, int pos)
  int[4] final = state;
  // Promotion
  if (final[pos] > 1)
    final[pos] = 1;
  else
    final[pos] = 0;
  // Is there a block with age 3?
  bit found = 0;
  for(int j = 0; j < 4; j = j + 1)
    if(!found)
      for(int i = 0; i < 4; i = i + 1)
        if(!found && final[i] == 3)
            found = 1;
    // If not, increase all blocks 
    if(!found)
      for(int i = 0; i < 4; i = i + 1)
          final[i] = final[i] + 1;
  return final;

// Replace first block with age 3 starting from the left
int missIdx (int[4] state)
  for(int i = 0; i < 4; i = i + 1)
    if(state[i] == 3)
      return i;

int[4] missState (int[4] state)
  int[4] final = state;
  int replace = missIdx(state);
  // Insertion
  final[replace] = 1;
  // Is there a block with age 3?
  bit found = 0;
  for(int j = 0; j < 4; j = j + 1)
    if(!found)
      for(int i = 0; i < 4; i = i + 1)
        if(!found && final[i] == 3)
          found = 1;
    // If not, increase all blocks
    if(!found)
      for(int i = 0; i < 4; i = i + 1)
          final[i] = final[i] + 1;
  return final;

Description of Skylake/Kaby Lake L3’s (New2):
Initial insertion on a flushed cache set:

int[4] s0 = {3,3,3,3};
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Thank you for listening! Questions?

28https://github.com/cgvwzq/cachequery https://github.com/cgvwzq/polca https://arxiv.org/pdf/1912.09770.pdf


