
CacheQuery: Learning
Replacement Policies from

Hardware Caches
Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf

 IMDEA Software Institute Microsoft Research

PLDI 2020 Synthesis II

2

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

Caches: those little although faster friends...

3

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

Caches: those little although faster friends...

Caches: those little although faster friends...

4

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

5

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1

block 0

1

2

3

...

Memory

CPU

memory address

=
HIT

Caches: those little although faster friends...

6

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1

block 0

1

2

3

...

Memory

CPU

memory address

=
HIT

64 bytes of data

fast access time

Caches: those little although faster friends...

7

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

Caches: those little although faster friends...

8

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

MISS

Caches: those little although faster friends...

9

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

MISS
replacement policy

evicts one block

Caches: those little although faster friends...

10

● Memory partitioned in memory blocks (64 bytes = 26)
● Cache partitioned in equally sized cache sets (1024 = 210 = 256KB / (64 * 4)
● Cache sets have capacity for N cache lines (also known as ways or associativity)

Tag Set Offset

10 6

Tag Data

256KBs Cache

A
ssociativity

Set 0

Set 1=

block 0

1

2

3

...

Memory

CPU

memory address

MISS

insert new block

64 bytes of data
slow access time

Caches: those little although faster friends...

11

Caches: their importance and impact

11

12

Problem: cache as a black box

BLACKBOX CACHE

f30 f40 f50 f30 15 16 14 4

MEMORY ADDRESSES TIME MEASUREMENTS

Our approach for learning replacement policies
Pr

og
ra

m
 s

yn
th

es
is

A
ut

om
at

a
le

ar
ni

ng

Po
lic

y
ab

st
ra

ct
io

n

H
ar

dw
ar

e
in

te
rf

ac
e

Template

Explanation

f30 f40 f50 f30
f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

13

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

1234

CacheQuery: a hardware interface

C
ac

he
Q

ue
ry f30 f40 f50 f30

f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

14

Pr
og

ra
m

 s
yn

th
es

is

A
ut

om
at

a
le

ar
ni

ng

Po
lic

y
ab

st
ra

ct
io

n

Template

Explanation

_ _ 0

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

h(0) h(1) m()

15

CacheQuery: a
hardware interface

15

Polca: a cache automaton abstraction
Pr

og
ra

m
 s

yn
th

es
is

A
ut

om
at

a
le

ar
ni

ng

P
ol

ca

C
ac

he
Q

ue
ry

Template

Explanation

f30 f40 f50 f30
f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

16

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

Polca: a cache policy automaton abstraction

1717

Polca: a cache policy automaton abstraction

P
ol

ca
 =

 M
ap

pe
r

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

Abstract
automaton

Replacement
policy

Concrete
automaton

Cache
management

keep track
of content

Input: {h(0), h(1), ..., h(n-1), m()} {A, B, C, ….}

Output: {_, 0, 1, …, n-1} {H, M}

18

Caches: those little although faster friends...

18

LearnLib: an automata learning framework
Pr

og
ra

m
 s

yn
th

es
is

A
ut

om
at

a
Le

ar
ni

ng

Po
lc

a

C
ac

he
Q

ue
ry

Template

Explanation

f30 f40 f50 f30
f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

19

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

20

LearnLib: an automata learning framework

20

● LearnLib is an open source Java framework for automata learning developed at the TU Dortmund -
https://learnlib.de/

● Angluin’s L* algorithm has been extended to Mealy machines:

○ Membership queries replaced by output queries

○ Equivalence queries approximated by test sequences for conformance testing

○ Reset sequence is bootstrapping problem, we solve it with Flush+Refill

WP-method: test sequence selection - given an upper bound on the
number of states of the System Under Learning (SUL), guarantees
equivalence

https://learnlib.de/

Sketch: synthesizing programs as explanations
P

ro
gr

am
 s

yn
th

es
is

A
ut

om
at

a
Le

ar
ni

ng

Po
lc

a

C
ac

he
Q

ue
ry

Template

Explanation

f30 f40 f50 f30
f30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

A B C A
A B C B

H H M M
H H M H

h(0) h(1) m()

_ _ 0

21

int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

22

Sketch: synthesizing programs as explanations

22

23

Sketch: synthesizing programs as explanations

23

Domain knowledge or high-level view of a replacement policy:

● Each block has an associated age

● Promotion rule decides how the ages are updated upon a hit

● Replacement rule decides which block is evicted upon a miss

● Insertion rule decides the age of a new block

We use it to “sketch” a template for replacement policies
and encode the automaton’s output and transition functions as constraints!

24

Sketch: synthesizing programs as explanations

24

hit (state, line) :: States×Lines → States
 state = promote(state, line)
 state = normalize(state, line)
 return state

miss (state) :: States → States×Lines
 Lines idx = -1
 state = normalize(state, idx)
 idx = evict(state)
 state[idx] = insert(state, idx)
 state = normalize(state, idx)
 return ⟨state, idx⟩

25

Sketch: synthesizing programs as explanations

25

hit (state, line) :: States×Lines → States
 state = promote(state, line)
 state = normalize(state, line)
 return state

miss (state) :: States → States×Lines
 Lines idx = -1
 state = normalize(state, idx)
 idx = evict(state)
 state[idx] = insert(state, idx)
 state = normalize(state, idx)
 return ⟨state, idx⟩

promote (state, pos) :: States×Lines → States
 States final = state
 if (??{boolExpr(state[pos])})
 final[pos] = ??{natExpr(state[pos])}
 for(i in Lines)
 if(i != pos ∧ ??{boolExpr(state[pos], state[i])})
 final[i] = ??{natExpr(state[i])}
 return final

26

Results

26

27

Results

27

int[4] hitState (int[4] state, int pos)
 int[4] final = state;
 // Promotion
 if (final[pos] > 1)
 final[pos] = 1;
 else
 final[pos] = 0;
 // Is there a block with age 3?
 bit found = 0;
 for(int j = 0; j < 4; j = j + 1)
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 if(!found && final[i] == 3)
 found = 1;
 // If not, increase all blocks
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 final[i] = final[i] + 1;
 return final;

// Replace first block with age 3 starting from the left
int missIdx (int[4] state)
 for(int i = 0; i < 4; i = i + 1)
 if(state[i] == 3)
 return i;

int[4] missState (int[4] state)
 int[4] final = state;
 int replace = missIdx(state);
 // Insertion
 final[replace] = 1;
 // Is there a block with age 3?
 bit found = 0;
 for(int j = 0; j < 4; j = j + 1)
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 if(!found && final[i] == 3)
 found = 1;
 // If not, increase all blocks
 if(!found)
 for(int i = 0; i < 4; i = i + 1)
 final[i] = final[i] + 1;
 return final;

Description of Skylake/Kaby Lake L3’s (New2):
Initial insertion on a flushed cache set:

int[4] s0 = {3,3,3,3};

28

Thank you for listening! Questions?

28https://github.com/cgvwzq/cachequery https://github.com/cgvwzq/polca https://arxiv.org/pdf/1912.09770.pdf

