CacheQuery: Learning
Replacement Policies from
Hardware Caches

Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Kopf
IMDEA Software Institute Microsoft Research

PLDI 2020 Synthesis II



Caches: those little although faster friends...

CPU

Memory

block 0

' memory address 256KBs Cache

>
wn
(2]
(@)
o,
o))
=g
<
"2"

e Memory partitioned in memory blocks (64 bytes = 2°)
e Cache partitioned in equally sized cache sets (1024 = 2'° = 256KB / (64 * 4)
e Cache sets have capacity for N cache lines (also known as ways or associativity)



Caches: those little although faster friends...

CPU

Memory

block 0

256KBs Cache
Tag Data

memory address

>
wn
(2]
(@)
o,
o))
=g
<
"2"

Y
6

10 4~

a > Set 1

e Memory partitioned in memory blocks (64 bytes = 2°)
e Cache partitioned in equally sized cache sets (1024 = 2'° = 256KB / (64 * 4)
e Cache sets have capacity for N cache lines (also known as ways or associativity)




Caches: those little although faster friends...

CPU

memory address 256KBs Cache
4 » Tag Data
- \

Memory partitioned in memory blocks (64 bytes = 2°)
Cache partitioned in equally sized cache sets (1024 = 2'° = 256KB / (64 * 4)
Cache sets have capacity for N cache lines (also known as ways or associativity)

>
wn
(2]
(@)
o,
o))
=g
<
"2"

Memory

block 0




Caches: those little although faster friends...

CPU

memory address 256KBs Cache
4 » Tag Data

Memory

block 0

>
wn
(2]
(@)
o,
o))
=g
<
"2"

e Memory partitioned in memory blocks (64 bytes = 2°)
e Cache partitioned in equally sized cache sets (1024 = 2'° = 256KB / (64 * 4)
e Cache sets have capacity for N cache lines (also known as ways or associativity)



Caches: those little although faster friends...

CPU

Memory

block 0

256KBs Cache

l Tag Data

memory address

64 bytes of data

Y
«Q
I
@
E
(/2]
@
wn
D
—
o
AlAneDossy

e — -

e Memory partitioned in memory blocks (64 bytes = 2°)
e Cache partitioned in equally sized cache sets (1024 = 2'° = 256KB / (64 * 4)
e Cache sets have capacity for N cache lines (also known as ways or associativity)



Caches: those little although faster friends...

CPU

memory address 256KBs Cache
4 » Tag Data
- \

Memory partitioned in memory blocks (64 bytes = 2°)
Cache partitioned in equally sized cache sets (1024 = 2'° = 256KB / (64 * 4)
Cache sets have capacity for N cache lines (also known as ways or associativity)

>
wn
(2]
(@)
o,
o))
=g
<
"2"

Memory

block 0




Caches: those little although faster friends...

CPU

memory address 256KBs Cache
4 » Tag Data

Memory partitioned in memory blocks (64 bytes = 2°)
Cache partitioned in equally sized cache sets (1024 = 2'° = 256KB / (64 * 4)
Cache sets have capacity for N cache lines (also known as ways or associativity)

>
wn
(2]
(@)
o,
o))
=g
<
"2"

Memory

block 0




Caches: those little although faster friends...

CPU

256KBs Cache

memory address

-
-

replacement policy
evicts one block

Memory partitioned in memory blocks (64 bytes = 2°)
Cache partitioned in equally sized cache sets (1024 = 2'° = 256KB / (64 * 4)
Cache sets have capacity for N cache lines (also known as ways or associativity)

AlAneDossy

Memory

block 0




Caches: those little although faster friends...

CPU

Memory

block 0

256KBs Cache

memory address

slow access time
Jvr mT 6

b [y
ray awa

T AlAneDossy

>  Set1

insert new block

e Memory partitioned in memory blocks (64 bytes = 2°)
e Cache partitioned in equally sized cache sets (1024 = 2'° = 256KB / (64 * 4)
e Cache sets have capacity for N cache lines (also known as ways or associativity)



Caches: their importance and impact

exact WCET

measured WCET over margin

c
L
S
=
)
=
=
D
©

safety margin

execution time

11



Problem: cache as a black box

MEMORY ADDRESSES

30 f40 f50 f30

BLACKBOX CACHE

TIME MEASUREMENTS

15 16 14 4

12



Our approach for learning replacement policies

Template

ol

int missIdx (int[4] state)
A

if(state[i] == 3)

n |
(7, 1/0 0/1
)
. ()
=
>, )
(7)) 1/0
£
©
—
(@)
©)
—
o
for(int i = 0; i
return ij;
Explanation

> >
W W
ale}
W >

h(e) h(1) m()

>

Automata learning
Policy abstraction
Hardware interface

I T
I T
==
=

f30 f40 f50 30
30 f40 50 f40

4c 4c 12c 12c
4c 4c 12c 4c

13



CacheQuery: a hardware interface

> >
W W
ol e]
W >

== e

T

==

I =

CacheQuery

f30 f40 f50 f30
30 f40 f50 f40

4c 4c 12c 12c
4c 4c 12c 4c

14



CacheQuery: a
hardware interface

15



Polca: a cache policy automaton abstraction

h(@) h(1) m() b c B

Polca

I T
T
==
I =

__2©

16



Polca: a cache policy automaton abstraction

Abstract h(e) h(1) m() § Concrete
automaton éu automaton
Replacement % Cache
policy o E management
Input: {h(®), h(1), ..., h(n-1), m()} {A, B, C, ....}

Output: {_, 0, 1, ..., n-1} {H, M}
17



Caches: those little although faster friends...




LearnLib: an automata learning framework

1/

0/0
0 ' 0/1
1/0

Automata Learning

h(e) h(1) m()

I

__2©

19



LearnLib: an automata learning framework

LearnLib is an open source Java framework for automata learning developed at the TU Dortmund -

Angluin’s L* algorithm has been extended to Mealy machines:
o  Membership queries replaced by output queries
o Equivalence queries approximated by test sequences for conformance testing

o Reset sequence is bootstrapping problem, we solve it with Flugh+Refill

WP-method: test sequence selection - given an upper bound on the
number of states of the System Under Learning (SUL), guarantees
equivalence

20


https://learnlib.de/

Sketch: synthesizing programs as explanations

Template

!

1/0

0/0
‘iiii’
()
1/0

Program synthesis

int missIdx (1nt[4] ttttt )
for (' nt ;i=1+1)
( [ ] )

Explanation

21



Sketch: synthesizing programs as explanations

22



Sketch: synthesizing programs as explanations

Domain knowledge or high-level view of a replacement policy:
e FEach block has an associated age
e Promotion rule decides how the ages are updated upon a hit
e Replacement rule decides which block is evicted upon a miss

e Insertion rule decides the age of a new block

We use it to “sketch” a template for replacement policies
and encode the automaton’s output and transition functions as constraints!

23



Sketch: synthesizing programs as explanations

hit (state, line) :: StatesxLines — States

state = promote(state, line)
state = normalize(state, line)
return state

miss (state) :: States — StatesxLines

Lines idx = -1

state = normalize(state, idx)
idx = evict(state)

state[idx] = insert(state, idx)
state = normalize(state, idx)
return (state, idx)

24



Sketch: synthesizing programs as explanations

miss (state) :: States — StatesxLines

hit (state, line) :: StatesxLines — States Lines idx = ‘1- _
state = promote(state, line) state = normalize(state, idx)

state = normalize(state, line) idx = evict(state)
return state state[idx] = insert(state, idx)

state = normalize(state, idx)
return (state, idx)

promote (state, pos) :: StatesxLines — States
States final = state
if (??{boolExpr(state[pos])})
final[pos] = ??{natExpr(state[pos])}
for(i in Lines)
if(i !'= pos A ??{boolExpr(state[pos], state[i])})
final[i] = ??{natExpr(state[i])}
return final

25



Results

26



Results
Description of Skylake/Kaby Lake L3’s (NewZ2}:

Initial insertion on a flushed cache set:

int[4] s = {3,3,3,3};

int[4] hitState (int[4] state, int pos)
int[4] final = state;

// Promotion

if (final[pos] > 1)

final[pos] = 1;

final[pos] = 0;
// Is there a block with age 3?
bit found = 9;
for(int j =0; j <4; j=3]+1)
if(!found)
for(int i = 0; i < 4; i =1 + 1)
if(!found && final[i] == 3)

found = 1;
// If not, increase all blocks
if(!found)

for(int i =90; i < 4; i=1+ 1)

i
final[i] = final[i] 1;

return final;

int[4] missState (int[4] state)
int[4] final = state;
int replace = missIdx(state);
// Insertion
// Is there a block with age 3?
bit found = 9;
for(int j =0; j < 4; j =3+ 1)

if(!found)
for(int i =0; i < 4; i =1+ 1)
if(!found & final[i] == 3)
found = 1;
// If not, increase all blocks

if(!found)
for(int i = 0; 1 < 4; i

+ 1)

=

final[i] = final[i] +
return final;

// Replace first block with age 3 starting from the left
int missIdx (int[4] state)

foriint i=0;1<4;1i=1+1)

return i;

27



Thank you for listening! Questions?

https://github.com/cgvwzqg/cachequery https://github.com/cgvwzqg/polca

https://arxiv.org/pdf/1912.09770.pdf

28



